ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss Unicode version

Theorem rncoss 4994
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss  |-  ran  ( A  o.  B )  C_ 
ran  A

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4993 . 2  |-  dom  ( `' B  o.  `' A )  C_  dom  `' A
2 df-rn 4729 . . 3  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
3 cnvco 4906 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
43dmeqi 4923 . . 3  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
52, 4eqtri 2250 . 2  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
6 df-rn 4729 . 2  |-  ran  A  =  dom  `' A
71, 5, 63sstr4i 3265 1  |-  ran  ( A  o.  B )  C_ 
ran  A
Colors of variables: wff set class
Syntax hints:    C_ wss 3197   `'ccnv 4717   dom cdm 4718   ran crn 4719    o. ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729
This theorem is referenced by:  cossxp  5250  fco  5488  caseinj  7252  djuinj  7269  znleval  14611
  Copyright terms: Public domain W3C validator