ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss Unicode version

Theorem rncoss 4937
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss  |-  ran  ( A  o.  B )  C_ 
ran  A

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4936 . 2  |-  dom  ( `' B  o.  `' A )  C_  dom  `' A
2 df-rn 4675 . . 3  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
3 cnvco 4852 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
43dmeqi 4868 . . 3  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
52, 4eqtri 2217 . 2  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
6 df-rn 4675 . 2  |-  ran  A  =  dom  `' A
71, 5, 63sstr4i 3225 1  |-  ran  ( A  o.  B )  C_ 
ran  A
Colors of variables: wff set class
Syntax hints:    C_ wss 3157   `'ccnv 4663   dom cdm 4664   ran crn 4665    o. ccom 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675
This theorem is referenced by:  cossxp  5193  fco  5426  caseinj  7164  djuinj  7181  znleval  14285
  Copyright terms: Public domain W3C validator