ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss Unicode version

Theorem rncoss 4958
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss  |-  ran  ( A  o.  B )  C_ 
ran  A

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4957 . 2  |-  dom  ( `' B  o.  `' A )  C_  dom  `' A
2 df-rn 4694 . . 3  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
3 cnvco 4871 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
43dmeqi 4888 . . 3  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
52, 4eqtri 2227 . 2  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
6 df-rn 4694 . 2  |-  ran  A  =  dom  `' A
71, 5, 63sstr4i 3238 1  |-  ran  ( A  o.  B )  C_ 
ran  A
Colors of variables: wff set class
Syntax hints:    C_ wss 3170   `'ccnv 4682   dom cdm 4683   ran crn 4684    o. ccom 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694
This theorem is referenced by:  cossxp  5214  fco  5451  caseinj  7206  djuinj  7223  znleval  14490
  Copyright terms: Public domain W3C validator