ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss Unicode version

Theorem rncoss 4899
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss  |-  ran  ( A  o.  B )  C_ 
ran  A

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4898 . 2  |-  dom  ( `' B  o.  `' A )  C_  dom  `' A
2 df-rn 4639 . . 3  |-  ran  ( A  o.  B )  =  dom  `' ( A  o.  B )
3 cnvco 4814 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
43dmeqi 4830 . . 3  |-  dom  `' ( A  o.  B
)  =  dom  ( `' B  o.  `' A )
52, 4eqtri 2198 . 2  |-  ran  ( A  o.  B )  =  dom  ( `' B  o.  `' A )
6 df-rn 4639 . 2  |-  ran  A  =  dom  `' A
71, 5, 63sstr4i 3198 1  |-  ran  ( A  o.  B )  C_ 
ran  A
Colors of variables: wff set class
Syntax hints:    C_ wss 3131   `'ccnv 4627   dom cdm 4628   ran crn 4629    o. ccom 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639
This theorem is referenced by:  cossxp  5153  fco  5383  caseinj  7090  djuinj  7107
  Copyright terms: Public domain W3C validator