ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnin Unicode version

Theorem rnin 5075
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 5073 . . . 4  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
21dmeqi 4863 . . 3  |-  dom  `' ( A  i^i  B )  =  dom  ( `' A  i^i  `' B
)
3 dmin 4870 . . 3  |-  dom  ( `' A  i^i  `' B
)  C_  ( dom  `' A  i^i  dom  `' B )
42, 3eqsstri 3211 . 2  |-  dom  `' ( A  i^i  B ) 
C_  ( dom  `' A  i^i  dom  `' B
)
5 df-rn 4670 . 2  |-  ran  ( A  i^i  B )  =  dom  `' ( A  i^i  B )
6 df-rn 4670 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4670 . . 3  |-  ran  B  =  dom  `' B
86, 7ineq12i 3358 . 2  |-  ( ran 
A  i^i  ran  B )  =  ( dom  `' A  i^i  dom  `' B
)
94, 5, 83sstr4i 3220 1  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )
Colors of variables: wff set class
Syntax hints:    i^i cin 3152    C_ wss 3153   `'ccnv 4658   dom cdm 4659   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  inimass  5082
  Copyright terms: Public domain W3C validator