ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnin Unicode version

Theorem rnin 4988
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 4986 . . . 4  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
21dmeqi 4780 . . 3  |-  dom  `' ( A  i^i  B )  =  dom  ( `' A  i^i  `' B
)
3 dmin 4787 . . 3  |-  dom  ( `' A  i^i  `' B
)  C_  ( dom  `' A  i^i  dom  `' B )
42, 3eqsstri 3156 . 2  |-  dom  `' ( A  i^i  B ) 
C_  ( dom  `' A  i^i  dom  `' B
)
5 df-rn 4590 . 2  |-  ran  ( A  i^i  B )  =  dom  `' ( A  i^i  B )
6 df-rn 4590 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4590 . . 3  |-  ran  B  =  dom  `' B
86, 7ineq12i 3302 . 2  |-  ( ran 
A  i^i  ran  B )  =  ( dom  `' A  i^i  dom  `' B
)
94, 5, 83sstr4i 3165 1  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )
Colors of variables: wff set class
Syntax hints:    i^i cin 3097    C_ wss 3098   `'ccnv 4578   dom cdm 4579   ran crn 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-rel 4586  df-cnv 4587  df-dm 4589  df-rn 4590
This theorem is referenced by:  inimass  4995
  Copyright terms: Public domain W3C validator