ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimass Unicode version

Theorem inimass 5047
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass  |-  ( ( A  i^i  B )
" C )  C_  ( ( A " C )  i^i  ( B " C ) )

Proof of Theorem inimass
StepHypRef Expression
1 rnin 5040 . 2  |-  ran  (
( A  |`  C )  i^i  ( B  |`  C ) )  C_  ( ran  ( A  |`  C )  i^i  ran  ( B  |`  C ) )
2 df-ima 4641 . . 3  |-  ( ( A  i^i  B )
" C )  =  ran  ( ( A  i^i  B )  |`  C )
3 resindir 4925 . . . 4  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
43rneqi 4857 . . 3  |-  ran  (
( A  i^i  B
)  |`  C )  =  ran  ( ( A  |`  C )  i^i  ( B  |`  C ) )
52, 4eqtri 2198 . 2  |-  ( ( A  i^i  B )
" C )  =  ran  ( ( A  |`  C )  i^i  ( B  |`  C ) )
6 df-ima 4641 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
7 df-ima 4641 . . 3  |-  ( B
" C )  =  ran  ( B  |`  C )
86, 7ineq12i 3336 . 2  |-  ( ( A " C )  i^i  ( B " C ) )  =  ( ran  ( A  |`  C )  i^i  ran  ( B  |`  C ) )
91, 5, 83sstr4i 3198 1  |-  ( ( A  i^i  B )
" C )  C_  ( ( A " C )  i^i  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    i^i cin 3130    C_ wss 3131   ran crn 4629    |` cres 4630   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator