ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimass Unicode version

Theorem inimass 5145
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass  |-  ( ( A  i^i  B )
" C )  C_  ( ( A " C )  i^i  ( B " C ) )

Proof of Theorem inimass
StepHypRef Expression
1 rnin 5138 . 2  |-  ran  (
( A  |`  C )  i^i  ( B  |`  C ) )  C_  ( ran  ( A  |`  C )  i^i  ran  ( B  |`  C ) )
2 df-ima 4732 . . 3  |-  ( ( A  i^i  B )
" C )  =  ran  ( ( A  i^i  B )  |`  C )
3 resindir 5021 . . . 4  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
43rneqi 4952 . . 3  |-  ran  (
( A  i^i  B
)  |`  C )  =  ran  ( ( A  |`  C )  i^i  ( B  |`  C ) )
52, 4eqtri 2250 . 2  |-  ( ( A  i^i  B )
" C )  =  ran  ( ( A  |`  C )  i^i  ( B  |`  C ) )
6 df-ima 4732 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
7 df-ima 4732 . . 3  |-  ( B
" C )  =  ran  ( B  |`  C )
86, 7ineq12i 3403 . 2  |-  ( ( A " C )  i^i  ( B " C ) )  =  ( ran  ( A  |`  C )  i^i  ran  ( B  |`  C ) )
91, 5, 83sstr4i 3265 1  |-  ( ( A  i^i  B )
" C )  C_  ( ( A " C )  i^i  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    i^i cin 3196    C_ wss 3197   ran crn 4720    |` cres 4721   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator