ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimass Unicode version

Theorem inimass 5027
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass  |-  ( ( A  i^i  B )
" C )  C_  ( ( A " C )  i^i  ( B " C ) )

Proof of Theorem inimass
StepHypRef Expression
1 rnin 5020 . 2  |-  ran  (
( A  |`  C )  i^i  ( B  |`  C ) )  C_  ( ran  ( A  |`  C )  i^i  ran  ( B  |`  C ) )
2 df-ima 4624 . . 3  |-  ( ( A  i^i  B )
" C )  =  ran  ( ( A  i^i  B )  |`  C )
3 resindir 4907 . . . 4  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
43rneqi 4839 . . 3  |-  ran  (
( A  i^i  B
)  |`  C )  =  ran  ( ( A  |`  C )  i^i  ( B  |`  C ) )
52, 4eqtri 2191 . 2  |-  ( ( A  i^i  B )
" C )  =  ran  ( ( A  |`  C )  i^i  ( B  |`  C ) )
6 df-ima 4624 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
7 df-ima 4624 . . 3  |-  ( B
" C )  =  ran  ( B  |`  C )
86, 7ineq12i 3326 . 2  |-  ( ( A " C )  i^i  ( B " C ) )  =  ( ran  ( A  |`  C )  i^i  ran  ( B  |`  C ) )
91, 5, 83sstr4i 3188 1  |-  ( ( A  i^i  B )
" C )  C_  ( ( A " C )  i^i  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    i^i cin 3120    C_ wss 3121   ran crn 4612    |` cres 4613   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator