ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn Unicode version

Theorem imassrn 4956
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn  |-  ( A
" B )  C_  ran  A

Proof of Theorem imassrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1606 . . 3  |-  ( E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
)  ->  E. x <. x ,  y >.  e.  A )
21ss2abi 3213 . 2  |-  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }  C_  { y  |  E. x <. x ,  y >.  e.  A }
3 dfima3 4948 . 2  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
4 dfrn3 4792 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
52, 3, 43sstr4i 3182 1  |-  ( A
" B )  C_  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1480    e. wcel 2136   {cab 2151    C_ wss 3115   <.cop 3578   ran crn 4604   "cima 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-xp 4609  df-cnv 4611  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616
This theorem is referenced by:  imaexg  4957  0ima  4963  cnvimass  4966  fimacnv  5613  f1opw2  6043  smores2  6258  ecss  6538  f1imaen2g  6755  fopwdom  6798  ssenen  6813  phplem4dom  6824  isinfinf  6859  fiintim  6890  sbthlem2  6919  sbthlemi3  6920  sbthlemi5  6922  sbthlemi6  6923  ctssdccl  7072  ctinf  12359  ssnnctlemct  12375  cnptoprest2  12840  hmeontr  12913  hmeores  12915  tgqioo  13147
  Copyright terms: Public domain W3C validator