ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn Unicode version

Theorem imassrn 5017
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn  |-  ( A
" B )  C_  ran  A

Proof of Theorem imassrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1629 . . 3  |-  ( E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
)  ->  E. x <. x ,  y >.  e.  A )
21ss2abi 3252 . 2  |-  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }  C_  { y  |  E. x <. x ,  y >.  e.  A }
3 dfima3 5009 . 2  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
4 dfrn3 4852 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
52, 3, 43sstr4i 3221 1  |-  ( A
" B )  C_  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1503    e. wcel 2164   {cab 2179    C_ wss 3154   <.cop 3622   ran crn 4661   "cima 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673
This theorem is referenced by:  imaexg  5020  0ima  5026  cnvimass  5029  fimacnv  5688  f1opw2  6126  smores2  6349  ecss  6632  f1imaen2g  6849  fopwdom  6894  ssenen  6909  phplem4dom  6920  isinfinf  6955  fiintim  6987  sbthlem2  7019  sbthlemi3  7020  sbthlemi5  7022  sbthlemi6  7023  ctssdccl  7172  ctinf  12590  ssnnctlemct  12606  mhmima  13066  cnptoprest2  14419  hmeontr  14492  hmeores  14494  tgqioo  14734
  Copyright terms: Public domain W3C validator