Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn Unicode version

Theorem imassrn 4740
 Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn

Proof of Theorem imassrn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1550 . . 3
21ss2abi 3077 . 2
3 dfima3 4732 . 2
4 dfrn3 4583 . 2
52, 3, 43sstr4i 3049 1
 Colors of variables: wff set class Syntax hints:   wa 102  wex 1422   wcel 1434  cab 2069   wss 2984  cop 3425   crn 4402  cima 4404 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-xp 4407  df-cnv 4409  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414 This theorem is referenced by:  imaexg  4741  0ima  4747  cnvimass  4750  fimacnv  5373  f1opw2  5785  smores2  5991  ecss  6263  f1imaen2g  6440  fopwdom  6482  ssenen  6497  phplem4dom  6508  isinfinf  6543  djuin  6663
 Copyright terms: Public domain W3C validator