ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn Unicode version

Theorem imassrn 5021
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn  |-  ( A
" B )  C_  ran  A

Proof of Theorem imassrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1632 . . 3  |-  ( E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
)  ->  E. x <. x ,  y >.  e.  A )
21ss2abi 3256 . 2  |-  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }  C_  { y  |  E. x <. x ,  y >.  e.  A }
3 dfima3 5013 . 2  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
4 dfrn3 4856 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
52, 3, 43sstr4i 3225 1  |-  ( A
" B )  C_  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1506    e. wcel 2167   {cab 2182    C_ wss 3157   <.cop 3626   ran crn 4665   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  imaexg  5024  0ima  5030  cnvimass  5033  fimacnv  5692  f1opw2  6130  smores2  6353  ecss  6636  f1imaen2g  6853  fopwdom  6898  ssenen  6913  phplem4dom  6924  isinfinf  6959  fiintim  6993  sbthlem2  7025  sbthlemi3  7026  sbthlemi5  7028  sbthlemi6  7029  ctssdccl  7178  ctinf  12657  ssnnctlemct  12673  mhmima  13133  cnptoprest2  14486  hmeontr  14559  hmeores  14561  tgqioo  14801
  Copyright terms: Public domain W3C validator