ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imassrn Unicode version

Theorem imassrn 5033
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
imassrn  |-  ( A
" B )  C_  ran  A

Proof of Theorem imassrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpr 1641 . . 3  |-  ( E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
)  ->  E. x <. x ,  y >.  e.  A )
21ss2abi 3265 . 2  |-  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }  C_  { y  |  E. x <. x ,  y >.  e.  A }
3 dfima3 5025 . 2  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
4 dfrn3 4867 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
52, 3, 43sstr4i 3234 1  |-  ( A
" B )  C_  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1515    e. wcel 2176   {cab 2191    C_ wss 3166   <.cop 3636   ran crn 4676   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  imaexg  5036  0ima  5042  cnvimass  5045  fimacnv  5709  f1opw2  6152  smores2  6380  ecss  6663  f1imaen2g  6885  fopwdom  6933  ssenen  6948  phplem4dom  6959  isinfinf  6994  fiintim  7028  sbthlem2  7060  sbthlemi3  7061  sbthlemi5  7063  sbthlemi6  7064  ctssdccl  7213  ctinf  12801  ssnnctlemct  12817  mhmima  13323  cnptoprest2  14712  hmeontr  14785  hmeores  14787  tgqioo  15027  domomsubct  15938
  Copyright terms: Public domain W3C validator