Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulge0 | Unicode version |
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 7863 | . . . . 5 | |
2 | 1 | ad2ant2r 501 | . . . 4 |
3 | 0re 7881 | . . . 4 | |
4 | ltnsym2 7971 | . . . 4 | |
5 | 2, 3, 4 | sylancl 410 | . . 3 |
6 | orc 702 | . . . . . 6 | |
7 | reaplt 8468 | . . . . . . 7 # | |
8 | 2, 3, 7 | sylancl 410 | . . . . . 6 # |
9 | 6, 8 | syl5ibr 155 | . . . . 5 # |
10 | simplll 523 | . . . . . . 7 # | |
11 | simplrl 525 | . . . . . . 7 # | |
12 | recn 7868 | . . . . . . . . . . . . . 14 | |
13 | recn 7868 | . . . . . . . . . . . . . . 15 | |
14 | mulap0r 8495 | . . . . . . . . . . . . . . 15 # # # | |
15 | 13, 14 | syl3an1 1253 | . . . . . . . . . . . . . 14 # # # |
16 | 12, 15 | syl3an2 1254 | . . . . . . . . . . . . 13 # # # |
17 | 16 | 3expia 1187 | . . . . . . . . . . . 12 # # # |
18 | 17 | ad2ant2r 501 | . . . . . . . . . . 11 # # # |
19 | 18 | imp 123 | . . . . . . . . . 10 # # # |
20 | 19 | simpld 111 | . . . . . . . . 9 # # |
21 | reaplt 8468 | . . . . . . . . . . 11 # | |
22 | 3, 21 | mpan2 422 | . . . . . . . . . 10 # |
23 | 22 | ad3antrrr 484 | . . . . . . . . 9 # # |
24 | 20, 23 | mpbid 146 | . . . . . . . 8 # |
25 | lenlt 7956 | . . . . . . . . . . . 12 | |
26 | 3, 25 | mpan 421 | . . . . . . . . . . 11 |
27 | 26 | biimpa 294 | . . . . . . . . . 10 |
28 | 27 | ad2antrr 480 | . . . . . . . . 9 # |
29 | biorf 734 | . . . . . . . . 9 | |
30 | 28, 29 | syl 14 | . . . . . . . 8 # |
31 | 24, 30 | mpbird 166 | . . . . . . 7 # |
32 | 19 | simprd 113 | . . . . . . . . 9 # # |
33 | reaplt 8468 | . . . . . . . . . . . 12 # | |
34 | 3, 33 | mpan2 422 | . . . . . . . . . . 11 # |
35 | 34 | ad2antrl 482 | . . . . . . . . . 10 # |
36 | 35 | adantr 274 | . . . . . . . . 9 # # |
37 | 32, 36 | mpbid 146 | . . . . . . . 8 # |
38 | lenlt 7956 | . . . . . . . . . . . 12 | |
39 | 3, 38 | mpan 421 | . . . . . . . . . . 11 |
40 | 39 | biimpa 294 | . . . . . . . . . 10 |
41 | 40 | ad2antlr 481 | . . . . . . . . 9 # |
42 | biorf 734 | . . . . . . . . 9 | |
43 | 41, 42 | syl 14 | . . . . . . . 8 # |
44 | 37, 43 | mpbird 166 | . . . . . . 7 # |
45 | 10, 11, 31, 44 | mulgt0d 8003 | . . . . . 6 # |
46 | 45 | ex 114 | . . . . 5 # |
47 | 9, 46 | syld 45 | . . . 4 |
48 | 47 | ancld 323 | . . 3 |
49 | 5, 48 | mtod 653 | . 2 |
50 | lenlt 7956 | . . 3 | |
51 | 3, 2, 50 | sylancr 411 | . 2 |
52 | 49, 51 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wcel 2128 class class class wbr 3967 (class class class)co 5827 cc 7733 cr 7734 cc0 7735 cmul 7740 clt 7915 cle 7916 # cap 8461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-setind 4499 ax-cnex 7826 ax-resscn 7827 ax-1cn 7828 ax-1re 7829 ax-icn 7830 ax-addcl 7831 ax-addrcl 7832 ax-mulcl 7833 ax-mulrcl 7834 ax-addcom 7835 ax-mulcom 7836 ax-addass 7837 ax-mulass 7838 ax-distr 7839 ax-i2m1 7840 ax-0lt1 7841 ax-1rid 7842 ax-0id 7843 ax-rnegex 7844 ax-precex 7845 ax-cnre 7846 ax-pre-ltirr 7847 ax-pre-ltwlin 7848 ax-pre-lttrn 7849 ax-pre-apti 7850 ax-pre-ltadd 7851 ax-pre-mulgt0 7852 ax-pre-mulext 7853 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4029 df-id 4256 df-po 4259 df-iso 4260 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-iota 5138 df-fun 5175 df-fv 5181 df-riota 5783 df-ov 5830 df-oprab 5831 df-mpo 5832 df-pnf 7917 df-mnf 7918 df-xr 7919 df-ltxr 7920 df-le 7921 df-sub 8053 df-neg 8054 df-reap 8455 df-ap 8462 |
This theorem is referenced by: mulge0i 8500 mulge0d 8501 ge0mulcl 9893 expge0 10465 bernneq 10548 sqrtmul 10947 amgm2 11030 |
Copyright terms: Public domain | W3C validator |