ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 Unicode version

Theorem mulge0 8762
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 8123 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
21ad2ant2r 509 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
3 0re 8142 . . . 4  |-  0  e.  RR
4 ltnsym2 8233 . . . 4  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  -.  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) )
52, 3, 4sylancl 413 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  (
( A  x.  B
)  <  0  /\  0  <  ( A  x.  B ) ) )
6 orc 717 . . . . . 6  |-  ( ( A  x.  B )  <  0  ->  (
( A  x.  B
)  <  0  \/  0  <  ( A  x.  B ) ) )
7 reaplt 8731 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  ( ( A  x.  B ) #  0  <->  ( ( A  x.  B )  <  0  \/  0  < 
( A  x.  B
) ) ) )
82, 3, 7sylancl 413 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0 
<->  ( ( A  x.  B )  <  0  \/  0  <  ( A  x.  B ) ) ) )
96, 8imbitrrid 156 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( A  x.  B ) #  0 ) )
10 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A  e.  RR )
11 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B  e.  RR )
12 recn 8128 . . . . . . . . . . . . . 14  |-  ( B  e.  RR  ->  B  e.  CC )
13 recn 8128 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  A  e.  CC )
14 mulap0r 8758 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1513, 14syl3an1 1304 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1612, 15syl3an2 1305 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
17163expia 1229 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1817ad2ant2r 509 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1918imp 124 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  /\  B #  0 ) )
2019simpld 112 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A #  0 )
21 reaplt 8731 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
223, 21mpan2 425 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A #  0  <->  ( A  <  0  \/  0  < 
A ) ) )
2322ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
2420, 23mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A  <  0  \/  0  <  A ) )
25 lenlt 8218 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
263, 25mpan 424 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  A  <  0 ) )
2726biimpa 296 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  A  <  0
)
2827ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  A  <  0
)
29 biorf 749 . . . . . . . . 9  |-  ( -.  A  <  0  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3028, 29syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3124, 30mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  A )
3219simprd 114 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B #  0 )
33 reaplt 8731 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  ( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
343, 33mpan2 425 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B #  0  <->  ( B  <  0  \/  0  < 
B ) ) )
3534ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B #  0 
<->  ( B  <  0  \/  0  <  B ) ) )
3635adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
3732, 36mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B  <  0  \/  0  <  B ) )
38 lenlt 8218 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
393, 38mpan 424 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
0  <_  B  <->  -.  B  <  0 ) )
4039biimpa 296 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  -.  B  <  0
)
4140ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  B  <  0
)
42 biorf 749 . . . . . . . . 9  |-  ( -.  B  <  0  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4341, 42syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4437, 43mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  B )
4510, 11, 31, 44mulgt0d 8265 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  ( A  x.  B ) )
4645ex 115 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  0  <  ( A  x.  B )
) )
479, 46syld 45 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  0  <  ( A  x.  B ) ) )
4847ancld 325 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) ) )
495, 48mtod 667 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  ( A  x.  B )  <  0 )
50 lenlt 8218 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  <_ 
( A  x.  B
)  <->  -.  ( A  x.  B )  <  0
) )
513, 2, 50sylancr 414 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
5249, 51mpbird 167 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995    x. cmul 8000    < clt 8177    <_ cle 8178   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  mulge0i  8763  mulge0d  8764  ge0mulcl  10174  expge0  10792  bernneq  10877  sqrtmul  11541  amgm2  11624  2lgslem1a1  15759
  Copyright terms: Public domain W3C validator