ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 Unicode version

Theorem mulge0 8578
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7941 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
21ad2ant2r 509 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
3 0re 7959 . . . 4  |-  0  e.  RR
4 ltnsym2 8050 . . . 4  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  -.  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) )
52, 3, 4sylancl 413 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  (
( A  x.  B
)  <  0  /\  0  <  ( A  x.  B ) ) )
6 orc 712 . . . . . 6  |-  ( ( A  x.  B )  <  0  ->  (
( A  x.  B
)  <  0  \/  0  <  ( A  x.  B ) ) )
7 reaplt 8547 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  ( ( A  x.  B ) #  0  <->  ( ( A  x.  B )  <  0  \/  0  < 
( A  x.  B
) ) ) )
82, 3, 7sylancl 413 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0 
<->  ( ( A  x.  B )  <  0  \/  0  <  ( A  x.  B ) ) ) )
96, 8imbitrrid 156 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( A  x.  B ) #  0 ) )
10 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A  e.  RR )
11 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B  e.  RR )
12 recn 7946 . . . . . . . . . . . . . 14  |-  ( B  e.  RR  ->  B  e.  CC )
13 recn 7946 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  A  e.  CC )
14 mulap0r 8574 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1513, 14syl3an1 1271 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1612, 15syl3an2 1272 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
17163expia 1205 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1817ad2ant2r 509 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1918imp 124 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  /\  B #  0 ) )
2019simpld 112 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A #  0 )
21 reaplt 8547 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
223, 21mpan2 425 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A #  0  <->  ( A  <  0  \/  0  < 
A ) ) )
2322ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
2420, 23mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A  <  0  \/  0  <  A ) )
25 lenlt 8035 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
263, 25mpan 424 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  A  <  0 ) )
2726biimpa 296 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  A  <  0
)
2827ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  A  <  0
)
29 biorf 744 . . . . . . . . 9  |-  ( -.  A  <  0  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3028, 29syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3124, 30mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  A )
3219simprd 114 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B #  0 )
33 reaplt 8547 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  ( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
343, 33mpan2 425 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B #  0  <->  ( B  <  0  \/  0  < 
B ) ) )
3534ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B #  0 
<->  ( B  <  0  \/  0  <  B ) ) )
3635adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
3732, 36mpbid 147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B  <  0  \/  0  <  B ) )
38 lenlt 8035 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
393, 38mpan 424 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
0  <_  B  <->  -.  B  <  0 ) )
4039biimpa 296 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  -.  B  <  0
)
4140ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  B  <  0
)
42 biorf 744 . . . . . . . . 9  |-  ( -.  B  <  0  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4341, 42syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4437, 43mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  B )
4510, 11, 31, 44mulgt0d 8082 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  ( A  x.  B ) )
4645ex 115 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  0  <  ( A  x.  B )
) )
479, 46syld 45 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  0  <  ( A  x.  B ) ) )
4847ancld 325 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) ) )
495, 48mtod 663 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  ( A  x.  B )  <  0 )
50 lenlt 8035 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  <_ 
( A  x.  B
)  <->  -.  ( A  x.  B )  <  0
) )
513, 2, 50sylancr 414 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
5249, 51mpbird 167 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    x. cmul 7818    < clt 7994    <_ cle 7995   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by:  mulge0i  8579  mulge0d  8580  ge0mulcl  9984  expge0  10558  bernneq  10643  sqrtmul  11046  amgm2  11129
  Copyright terms: Public domain W3C validator