ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 Unicode version

Theorem mulge0 8344
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7712 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
21ad2ant2r 498 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
3 0re 7730 . . . 4  |-  0  e.  RR
4 ltnsym2 7818 . . . 4  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  -.  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) )
52, 3, 4sylancl 407 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  (
( A  x.  B
)  <  0  /\  0  <  ( A  x.  B ) ) )
6 orc 684 . . . . . 6  |-  ( ( A  x.  B )  <  0  ->  (
( A  x.  B
)  <  0  \/  0  <  ( A  x.  B ) ) )
7 reaplt 8313 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  ( ( A  x.  B ) #  0  <->  ( ( A  x.  B )  <  0  \/  0  < 
( A  x.  B
) ) ) )
82, 3, 7sylancl 407 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0 
<->  ( ( A  x.  B )  <  0  \/  0  <  ( A  x.  B ) ) ) )
96, 8syl5ibr 155 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( A  x.  B ) #  0 ) )
10 simplll 505 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A  e.  RR )
11 simplrl 507 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B  e.  RR )
12 recn 7717 . . . . . . . . . . . . . 14  |-  ( B  e.  RR  ->  B  e.  CC )
13 recn 7717 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  A  e.  CC )
14 mulap0r 8340 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1513, 14syl3an1 1232 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1612, 15syl3an2 1233 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
17163expia 1166 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1817ad2ant2r 498 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1918imp 123 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  /\  B #  0 ) )
2019simpld 111 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A #  0 )
21 reaplt 8313 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
223, 21mpan2 419 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A #  0  <->  ( A  <  0  \/  0  < 
A ) ) )
2322ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
2420, 23mpbid 146 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A  <  0  \/  0  <  A ) )
25 lenlt 7804 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
263, 25mpan 418 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  A  <  0 ) )
2726biimpa 292 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  A  <  0
)
2827ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  A  <  0
)
29 biorf 716 . . . . . . . . 9  |-  ( -.  A  <  0  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3028, 29syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3124, 30mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  A )
3219simprd 113 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B #  0 )
33 reaplt 8313 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  ( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
343, 33mpan2 419 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B #  0  <->  ( B  <  0  \/  0  < 
B ) ) )
3534ad2antrl 479 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B #  0 
<->  ( B  <  0  \/  0  <  B ) ) )
3635adantr 272 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
3732, 36mpbid 146 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B  <  0  \/  0  <  B ) )
38 lenlt 7804 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
393, 38mpan 418 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
0  <_  B  <->  -.  B  <  0 ) )
4039biimpa 292 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  -.  B  <  0
)
4140ad2antlr 478 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  B  <  0
)
42 biorf 716 . . . . . . . . 9  |-  ( -.  B  <  0  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4341, 42syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4437, 43mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  B )
4510, 11, 31, 44mulgt0d 7849 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  ( A  x.  B ) )
4645ex 114 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  0  <  ( A  x.  B )
) )
479, 46syld 45 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  0  <  ( A  x.  B ) ) )
4847ancld 321 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) ) )
495, 48mtod 635 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  ( A  x.  B )  <  0 )
50 lenlt 7804 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  <_ 
( A  x.  B
)  <->  -.  ( A  x.  B )  <  0
) )
513, 2, 50sylancr 408 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
5249, 51mpbird 166 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   CCcc 7582   RRcr 7583   0cc0 7584    x. cmul 7589    < clt 7764    <_ cle 7765   # cap 8306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307
This theorem is referenced by:  mulge0i  8345  mulge0d  8346  ge0mulcl  9716  expge0  10280  bernneq  10363  sqrtmul  10758  amgm2  10841
  Copyright terms: Public domain W3C validator