Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulge0 | Unicode version |
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 7881 | . . . . 5 | |
2 | 1 | ad2ant2r 501 | . . . 4 |
3 | 0re 7899 | . . . 4 | |
4 | ltnsym2 7989 | . . . 4 | |
5 | 2, 3, 4 | sylancl 410 | . . 3 |
6 | orc 702 | . . . . . 6 | |
7 | reaplt 8486 | . . . . . . 7 # | |
8 | 2, 3, 7 | sylancl 410 | . . . . . 6 # |
9 | 6, 8 | syl5ibr 155 | . . . . 5 # |
10 | simplll 523 | . . . . . . 7 # | |
11 | simplrl 525 | . . . . . . 7 # | |
12 | recn 7886 | . . . . . . . . . . . . . 14 | |
13 | recn 7886 | . . . . . . . . . . . . . . 15 | |
14 | mulap0r 8513 | . . . . . . . . . . . . . . 15 # # # | |
15 | 13, 14 | syl3an1 1261 | . . . . . . . . . . . . . 14 # # # |
16 | 12, 15 | syl3an2 1262 | . . . . . . . . . . . . 13 # # # |
17 | 16 | 3expia 1195 | . . . . . . . . . . . 12 # # # |
18 | 17 | ad2ant2r 501 | . . . . . . . . . . 11 # # # |
19 | 18 | imp 123 | . . . . . . . . . 10 # # # |
20 | 19 | simpld 111 | . . . . . . . . 9 # # |
21 | reaplt 8486 | . . . . . . . . . . 11 # | |
22 | 3, 21 | mpan2 422 | . . . . . . . . . 10 # |
23 | 22 | ad3antrrr 484 | . . . . . . . . 9 # # |
24 | 20, 23 | mpbid 146 | . . . . . . . 8 # |
25 | lenlt 7974 | . . . . . . . . . . . 12 | |
26 | 3, 25 | mpan 421 | . . . . . . . . . . 11 |
27 | 26 | biimpa 294 | . . . . . . . . . 10 |
28 | 27 | ad2antrr 480 | . . . . . . . . 9 # |
29 | biorf 734 | . . . . . . . . 9 | |
30 | 28, 29 | syl 14 | . . . . . . . 8 # |
31 | 24, 30 | mpbird 166 | . . . . . . 7 # |
32 | 19 | simprd 113 | . . . . . . . . 9 # # |
33 | reaplt 8486 | . . . . . . . . . . . 12 # | |
34 | 3, 33 | mpan2 422 | . . . . . . . . . . 11 # |
35 | 34 | ad2antrl 482 | . . . . . . . . . 10 # |
36 | 35 | adantr 274 | . . . . . . . . 9 # # |
37 | 32, 36 | mpbid 146 | . . . . . . . 8 # |
38 | lenlt 7974 | . . . . . . . . . . . 12 | |
39 | 3, 38 | mpan 421 | . . . . . . . . . . 11 |
40 | 39 | biimpa 294 | . . . . . . . . . 10 |
41 | 40 | ad2antlr 481 | . . . . . . . . 9 # |
42 | biorf 734 | . . . . . . . . 9 | |
43 | 41, 42 | syl 14 | . . . . . . . 8 # |
44 | 37, 43 | mpbird 166 | . . . . . . 7 # |
45 | 10, 11, 31, 44 | mulgt0d 8021 | . . . . . 6 # |
46 | 45 | ex 114 | . . . . 5 # |
47 | 9, 46 | syld 45 | . . . 4 |
48 | 47 | ancld 323 | . . 3 |
49 | 5, 48 | mtod 653 | . 2 |
50 | lenlt 7974 | . . 3 | |
51 | 3, 2, 50 | sylancr 411 | . 2 |
52 | 49, 51 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 cmul 7758 clt 7933 cle 7934 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: mulge0i 8518 mulge0d 8519 ge0mulcl 9918 expge0 10491 bernneq 10575 sqrtmul 10977 amgm2 11060 |
Copyright terms: Public domain | W3C validator |