| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulge0 | Unicode version | ||
| Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 8052 |
. . . . 5
| |
| 2 | 1 | ad2ant2r 509 |
. . . 4
|
| 3 | 0re 8071 |
. . . 4
| |
| 4 | ltnsym2 8162 |
. . . 4
| |
| 5 | 2, 3, 4 | sylancl 413 |
. . 3
|
| 6 | orc 713 |
. . . . . 6
| |
| 7 | reaplt 8660 |
. . . . . . 7
| |
| 8 | 2, 3, 7 | sylancl 413 |
. . . . . 6
|
| 9 | 6, 8 | imbitrrid 156 |
. . . . 5
|
| 10 | simplll 533 |
. . . . . . 7
| |
| 11 | simplrl 535 |
. . . . . . 7
| |
| 12 | recn 8057 |
. . . . . . . . . . . . . 14
| |
| 13 | recn 8057 |
. . . . . . . . . . . . . . 15
| |
| 14 | mulap0r 8687 |
. . . . . . . . . . . . . . 15
| |
| 15 | 13, 14 | syl3an1 1282 |
. . . . . . . . . . . . . 14
|
| 16 | 12, 15 | syl3an2 1283 |
. . . . . . . . . . . . 13
|
| 17 | 16 | 3expia 1207 |
. . . . . . . . . . . 12
|
| 18 | 17 | ad2ant2r 509 |
. . . . . . . . . . 11
|
| 19 | 18 | imp 124 |
. . . . . . . . . 10
|
| 20 | 19 | simpld 112 |
. . . . . . . . 9
|
| 21 | reaplt 8660 |
. . . . . . . . . . 11
| |
| 22 | 3, 21 | mpan2 425 |
. . . . . . . . . 10
|
| 23 | 22 | ad3antrrr 492 |
. . . . . . . . 9
|
| 24 | 20, 23 | mpbid 147 |
. . . . . . . 8
|
| 25 | lenlt 8147 |
. . . . . . . . . . . 12
| |
| 26 | 3, 25 | mpan 424 |
. . . . . . . . . . 11
|
| 27 | 26 | biimpa 296 |
. . . . . . . . . 10
|
| 28 | 27 | ad2antrr 488 |
. . . . . . . . 9
|
| 29 | biorf 745 |
. . . . . . . . 9
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . 8
|
| 31 | 24, 30 | mpbird 167 |
. . . . . . 7
|
| 32 | 19 | simprd 114 |
. . . . . . . . 9
|
| 33 | reaplt 8660 |
. . . . . . . . . . . 12
| |
| 34 | 3, 33 | mpan2 425 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrl 490 |
. . . . . . . . . 10
|
| 36 | 35 | adantr 276 |
. . . . . . . . 9
|
| 37 | 32, 36 | mpbid 147 |
. . . . . . . 8
|
| 38 | lenlt 8147 |
. . . . . . . . . . . 12
| |
| 39 | 3, 38 | mpan 424 |
. . . . . . . . . . 11
|
| 40 | 39 | biimpa 296 |
. . . . . . . . . 10
|
| 41 | 40 | ad2antlr 489 |
. . . . . . . . 9
|
| 42 | biorf 745 |
. . . . . . . . 9
| |
| 43 | 41, 42 | syl 14 |
. . . . . . . 8
|
| 44 | 37, 43 | mpbird 167 |
. . . . . . 7
|
| 45 | 10, 11, 31, 44 | mulgt0d 8194 |
. . . . . 6
|
| 46 | 45 | ex 115 |
. . . . 5
|
| 47 | 9, 46 | syld 45 |
. . . 4
|
| 48 | 47 | ancld 325 |
. . 3
|
| 49 | 5, 48 | mtod 664 |
. 2
|
| 50 | lenlt 8147 |
. . 3
| |
| 51 | 3, 2, 50 | sylancr 414 |
. 2
|
| 52 | 49, 51 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 |
| This theorem is referenced by: mulge0i 8692 mulge0d 8693 ge0mulcl 10103 expge0 10718 bernneq 10803 sqrtmul 11288 amgm2 11371 2lgslem1a1 15505 |
| Copyright terms: Public domain | W3C validator |