| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulge0 | Unicode version | ||
| Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 8073 |
. . . . 5
| |
| 2 | 1 | ad2ant2r 509 |
. . . 4
|
| 3 | 0re 8092 |
. . . 4
| |
| 4 | ltnsym2 8183 |
. . . 4
| |
| 5 | 2, 3, 4 | sylancl 413 |
. . 3
|
| 6 | orc 714 |
. . . . . 6
| |
| 7 | reaplt 8681 |
. . . . . . 7
| |
| 8 | 2, 3, 7 | sylancl 413 |
. . . . . 6
|
| 9 | 6, 8 | imbitrrid 156 |
. . . . 5
|
| 10 | simplll 533 |
. . . . . . 7
| |
| 11 | simplrl 535 |
. . . . . . 7
| |
| 12 | recn 8078 |
. . . . . . . . . . . . . 14
| |
| 13 | recn 8078 |
. . . . . . . . . . . . . . 15
| |
| 14 | mulap0r 8708 |
. . . . . . . . . . . . . . 15
| |
| 15 | 13, 14 | syl3an1 1283 |
. . . . . . . . . . . . . 14
|
| 16 | 12, 15 | syl3an2 1284 |
. . . . . . . . . . . . 13
|
| 17 | 16 | 3expia 1208 |
. . . . . . . . . . . 12
|
| 18 | 17 | ad2ant2r 509 |
. . . . . . . . . . 11
|
| 19 | 18 | imp 124 |
. . . . . . . . . 10
|
| 20 | 19 | simpld 112 |
. . . . . . . . 9
|
| 21 | reaplt 8681 |
. . . . . . . . . . 11
| |
| 22 | 3, 21 | mpan2 425 |
. . . . . . . . . 10
|
| 23 | 22 | ad3antrrr 492 |
. . . . . . . . 9
|
| 24 | 20, 23 | mpbid 147 |
. . . . . . . 8
|
| 25 | lenlt 8168 |
. . . . . . . . . . . 12
| |
| 26 | 3, 25 | mpan 424 |
. . . . . . . . . . 11
|
| 27 | 26 | biimpa 296 |
. . . . . . . . . 10
|
| 28 | 27 | ad2antrr 488 |
. . . . . . . . 9
|
| 29 | biorf 746 |
. . . . . . . . 9
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . 8
|
| 31 | 24, 30 | mpbird 167 |
. . . . . . 7
|
| 32 | 19 | simprd 114 |
. . . . . . . . 9
|
| 33 | reaplt 8681 |
. . . . . . . . . . . 12
| |
| 34 | 3, 33 | mpan2 425 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrl 490 |
. . . . . . . . . 10
|
| 36 | 35 | adantr 276 |
. . . . . . . . 9
|
| 37 | 32, 36 | mpbid 147 |
. . . . . . . 8
|
| 38 | lenlt 8168 |
. . . . . . . . . . . 12
| |
| 39 | 3, 38 | mpan 424 |
. . . . . . . . . . 11
|
| 40 | 39 | biimpa 296 |
. . . . . . . . . 10
|
| 41 | 40 | ad2antlr 489 |
. . . . . . . . 9
|
| 42 | biorf 746 |
. . . . . . . . 9
| |
| 43 | 41, 42 | syl 14 |
. . . . . . . 8
|
| 44 | 37, 43 | mpbird 167 |
. . . . . . 7
|
| 45 | 10, 11, 31, 44 | mulgt0d 8215 |
. . . . . 6
|
| 46 | 45 | ex 115 |
. . . . 5
|
| 47 | 9, 46 | syld 45 |
. . . 4
|
| 48 | 47 | ancld 325 |
. . 3
|
| 49 | 5, 48 | mtod 665 |
. 2
|
| 50 | lenlt 8168 |
. . 3
| |
| 51 | 3, 2, 50 | sylancr 414 |
. 2
|
| 52 | 49, 51 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 |
| This theorem is referenced by: mulge0i 8713 mulge0d 8714 ge0mulcl 10124 expge0 10742 bernneq 10827 sqrtmul 11421 amgm2 11504 2lgslem1a1 15638 |
| Copyright terms: Public domain | W3C validator |