ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 Unicode version

Theorem mulge0 8517
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7881 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
21ad2ant2r 501 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
3 0re 7899 . . . 4  |-  0  e.  RR
4 ltnsym2 7989 . . . 4  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  -.  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) )
52, 3, 4sylancl 410 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  (
( A  x.  B
)  <  0  /\  0  <  ( A  x.  B ) ) )
6 orc 702 . . . . . 6  |-  ( ( A  x.  B )  <  0  ->  (
( A  x.  B
)  <  0  \/  0  <  ( A  x.  B ) ) )
7 reaplt 8486 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  e.  RR )  ->  ( ( A  x.  B ) #  0  <->  ( ( A  x.  B )  <  0  \/  0  < 
( A  x.  B
) ) ) )
82, 3, 7sylancl 410 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0 
<->  ( ( A  x.  B )  <  0  \/  0  <  ( A  x.  B ) ) ) )
96, 8syl5ibr 155 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( A  x.  B ) #  0 ) )
10 simplll 523 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A  e.  RR )
11 simplrl 525 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B  e.  RR )
12 recn 7886 . . . . . . . . . . . . . 14  |-  ( B  e.  RR  ->  B  e.  CC )
13 recn 7886 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  A  e.  CC )
14 mulap0r 8513 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1513, 14syl3an1 1261 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
1612, 15syl3an2 1262 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
17163expia 1195 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1817ad2ant2r 501 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  ( A #  0  /\  B #  0 ) ) )
1918imp 123 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  /\  B #  0 ) )
2019simpld 111 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  A #  0 )
21 reaplt 8486 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
223, 21mpan2 422 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A #  0  <->  ( A  <  0  \/  0  < 
A ) ) )
2322ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A #  0  <->  ( A  <  0  \/  0  <  A ) ) )
2420, 23mpbid 146 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( A  <  0  \/  0  <  A ) )
25 lenlt 7974 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
263, 25mpan 421 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  A  <  0 ) )
2726biimpa 294 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  A  <  0
)
2827ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  A  <  0
)
29 biorf 734 . . . . . . . . 9  |-  ( -.  A  <  0  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3028, 29syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  A  <->  ( A  <  0  \/  0  <  A ) ) )
3124, 30mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  A )
3219simprd 113 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  B #  0 )
33 reaplt 8486 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  ( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
343, 33mpan2 422 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B #  0  <->  ( B  <  0  \/  0  < 
B ) ) )
3534ad2antrl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B #  0 
<->  ( B  <  0  \/  0  <  B ) ) )
3635adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B #  0  <->  ( B  <  0  \/  0  <  B ) ) )
3732, 36mpbid 146 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( B  <  0  \/  0  <  B ) )
38 lenlt 7974 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
393, 38mpan 421 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
0  <_  B  <->  -.  B  <  0 ) )
4039biimpa 294 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  -.  B  <  0
)
4140ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  ->  -.  B  <  0
)
42 biorf 734 . . . . . . . . 9  |-  ( -.  B  <  0  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4341, 42syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
( 0  <  B  <->  ( B  <  0  \/  0  <  B ) ) )
4437, 43mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  B )
4510, 11, 31, 44mulgt0d 8021 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  /\  ( A  x.  B
) #  0 )  -> 
0  <  ( A  x.  B ) )
4645ex 114 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B ) #  0  ->  0  <  ( A  x.  B )
) )
479, 46syld 45 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  0  <  ( A  x.  B ) ) )
4847ancld 323 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  B )  <  0  ->  ( ( A  x.  B )  <  0  /\  0  < 
( A  x.  B
) ) ) )
495, 48mtod 653 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  -.  ( A  x.  B )  <  0 )
50 lenlt 7974 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  <_ 
( A  x.  B
)  <->  -.  ( A  x.  B )  <  0
) )
513, 2, 50sylancr 411 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
5249, 51mpbird 166 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    x. cmul 7758    < clt 7933    <_ cle 7934   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  mulge0i  8518  mulge0d  8519  ge0mulcl  9918  expge0  10491  bernneq  10575  sqrtmul  10977  amgm2  11060
  Copyright terms: Public domain W3C validator