ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem10 Unicode version

Theorem 2sqlem10 14128
Description: Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem10  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Distinct variable groups:    x, w, y, z    x, A, y, z    x, B, y   
x, S, y, z   
x, Y, y
Allowed substitution hints:    A( w)    B( z, w)    S( w)    Y( z, w)

Proof of Theorem 2sqlem10
Dummy variables  a  b  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4003 . . . . . 6  |-  ( b  =  B  ->  (
b  ||  a  <->  B  ||  a
) )
2 eleq1 2240 . . . . . 6  |-  ( b  =  B  ->  (
b  e.  S  <->  B  e.  S ) )
31, 2imbi12d 234 . . . . 5  |-  ( b  =  B  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( B  ||  a  ->  B  e.  S ) ) )
43ralbidv 2477 . . . 4  |-  ( b  =  B  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S )
) )
5 oveq2 5877 . . . . . 6  |-  ( m  =  1  ->  (
1 ... m )  =  ( 1 ... 1
) )
65raleqdv 2678 . . . . 5  |-  ( m  =  1  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
7 oveq2 5877 . . . . . 6  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
87raleqdv 2678 . . . . 5  |-  ( m  =  n  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
9 oveq2 5877 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... m )  =  ( 1 ... (
n  +  1 ) ) )
109raleqdv 2678 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... (
n  +  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
11 oveq2 5877 . . . . . 6  |-  ( m  =  B  ->  (
1 ... m )  =  ( 1 ... B
) )
1211raleqdv 2678 . . . . 5  |-  ( m  =  B  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
13 elfz1eq 10021 . . . . . . . . 9  |-  ( b  e.  ( 1 ... 1 )  ->  b  =  1 )
14 1z 9268 . . . . . . . . . . . 12  |-  1  e.  ZZ
15 zgz 12354 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  1  e.  ZZ[_i]
17 sq1 10599 . . . . . . . . . . . 12  |-  ( 1 ^ 2 )  =  1
1817eqcomi 2181 . . . . . . . . . . 11  |-  1  =  ( 1 ^ 2 )
19 fveq2 5511 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
20 abs1 11065 . . . . . . . . . . . . . 14  |-  ( abs `  1 )  =  1
2119, 20eqtrdi 2226 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
2221oveq1d 5884 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
2322rspceeqv 2859 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
2416, 18, 23mp2an 426 . . . . . . . . . 10  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
25 2sq.1 . . . . . . . . . . 11  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
26252sqlem1 14117 . . . . . . . . . 10  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
2724, 26mpbir 146 . . . . . . . . 9  |-  1  e.  S
2813, 27eqeltrdi 2268 . . . . . . . 8  |-  ( b  e.  ( 1 ... 1 )  ->  b  e.  S )
2928a1d 22 . . . . . . 7  |-  ( b  e.  ( 1 ... 1 )  ->  (
b  ||  a  ->  b  e.  S ) )
3029ralrimivw 2551 . . . . . 6  |-  ( b  e.  ( 1 ... 1 )  ->  A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
3130rgen 2530 . . . . 5  |-  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)
32 2sqlem7.2 . . . . . . . . . . . . 13  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
33 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
34 nncn 8916 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  CC )
3534ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  n  e.  CC )
36 ax-1cn 7895 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 pncan 8153 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
3835, 36, 37sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
3938oveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
4039raleqdv 2678 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( A. b  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) ) )
4133, 40mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
42 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  ||  m
)
43 peano2nn 8920 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
4443ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  NN )
45 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  m  e.  Y
)
4625, 32, 41, 42, 44, 452sqlem9 14127 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  S
)
4746expr 375 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  m  e.  Y )  ->  (
( n  +  1 )  ||  m  -> 
( n  +  1 )  e.  S ) )
4847ralrimiva 2550 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
4948ex 115 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
50 breq2 4004 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( n  +  1 )  ||  a  <->  ( n  +  1 )  ||  m ) )
5150imbi1d 231 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S )  <-> 
( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
5251cbvralvw 2707 . . . . . . . . 9  |-  ( A. a  e.  Y  (
( n  +  1 )  ||  a  -> 
( n  +  1 )  e.  S )  <->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
5349, 52syl6ibr 162 . . . . . . . 8  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
54 breq1 4003 . . . . . . . . . . . 12  |-  ( b  =  ( n  + 
1 )  ->  (
b  ||  a  <->  ( n  +  1 )  ||  a ) )
55 eleq1 2240 . . . . . . . . . . . 12  |-  ( b  =  ( n  + 
1 )  ->  (
b  e.  S  <->  ( n  +  1 )  e.  S ) )
5654, 55imbi12d 234 . . . . . . . . . . 11  |-  ( b  =  ( n  + 
1 )  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5756ralbidv 2477 . . . . . . . . . 10  |-  ( b  =  ( n  + 
1 )  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5857ralsng 3631 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  ( A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5943, 58syl 14 . . . . . . . 8  |-  ( n  e.  NN  ->  ( A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
6053, 59sylibrd 169 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
6160ancld 325 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  -> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) ) )
62 elnnuz 9553 . . . . . . . . 9  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
63 fzsuc 10055 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6462, 63sylbi 121 . . . . . . . 8  |-  ( n  e.  NN  ->  (
1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6564raleqdv 2678 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
66 ralunb 3316 . . . . . . 7  |-  ( A. b  e.  ( (
1 ... n )  u. 
{ ( n  + 
1 ) } ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <-> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
6765, 66bitrdi 196 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  ( A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  /\  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) ) )
6861, 67sylibrd 169 . . . . 5  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
696, 8, 10, 12, 31, 68nnind 8924 . . . 4  |-  ( B  e.  NN  ->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
70 elfz1end 10041 . . . . 5  |-  ( B  e.  NN  <->  B  e.  ( 1 ... B
) )
7170biimpi 120 . . . 4  |-  ( B  e.  NN  ->  B  e.  ( 1 ... B
) )
724, 69, 71rspcdva 2846 . . 3  |-  ( B  e.  NN  ->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S ) )
73 breq2 4004 . . . . 5  |-  ( a  =  A  ->  ( B  ||  a  <->  B  ||  A
) )
7473imbi1d 231 . . . 4  |-  ( a  =  A  ->  (
( B  ||  a  ->  B  e.  S )  <-> 
( B  ||  A  ->  B  e.  S ) ) )
7574rspcv 2837 . . 3  |-  ( A  e.  Y  ->  ( A. a  e.  Y  ( B  ||  a  ->  B  e.  S )  ->  ( B  ||  A  ->  B  e.  S ) ) )
7672, 75syl5 32 . 2  |-  ( A  e.  Y  ->  ( B  e.  NN  ->  ( B  ||  A  ->  B  e.  S )
) )
77763imp 1193 1  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456    u. cun 3127   {csn 3591   class class class wbr 4000    |-> cmpt 4061   ran crn 4624   ` cfv 5212  (class class class)co 5869   CCcc 7800   1c1 7803    + caddc 7805    - cmin 8118   NNcn 8908   2c2 8959   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995   ^cexp 10505   abscabs 10990    || cdvds 11778    gcd cgcd 11926   ZZ[_i]cgz 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-gz 12351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator