ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem10 Unicode version

Theorem 2sqlem10 13755
Description: Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem10  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Distinct variable groups:    x, w, y, z    x, A, y, z    x, B, y   
x, S, y, z   
x, Y, y
Allowed substitution hints:    A( w)    B( z, w)    S( w)    Y( z, w)

Proof of Theorem 2sqlem10
Dummy variables  a  b  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3992 . . . . . 6  |-  ( b  =  B  ->  (
b  ||  a  <->  B  ||  a
) )
2 eleq1 2233 . . . . . 6  |-  ( b  =  B  ->  (
b  e.  S  <->  B  e.  S ) )
31, 2imbi12d 233 . . . . 5  |-  ( b  =  B  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( B  ||  a  ->  B  e.  S ) ) )
43ralbidv 2470 . . . 4  |-  ( b  =  B  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S )
) )
5 oveq2 5861 . . . . . 6  |-  ( m  =  1  ->  (
1 ... m )  =  ( 1 ... 1
) )
65raleqdv 2671 . . . . 5  |-  ( m  =  1  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
7 oveq2 5861 . . . . . 6  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
87raleqdv 2671 . . . . 5  |-  ( m  =  n  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
9 oveq2 5861 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... m )  =  ( 1 ... (
n  +  1 ) ) )
109raleqdv 2671 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... (
n  +  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
11 oveq2 5861 . . . . . 6  |-  ( m  =  B  ->  (
1 ... m )  =  ( 1 ... B
) )
1211raleqdv 2671 . . . . 5  |-  ( m  =  B  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
13 elfz1eq 9991 . . . . . . . . 9  |-  ( b  e.  ( 1 ... 1 )  ->  b  =  1 )
14 1z 9238 . . . . . . . . . . . 12  |-  1  e.  ZZ
15 zgz 12325 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  1  e.  ZZ[_i]
17 sq1 10569 . . . . . . . . . . . 12  |-  ( 1 ^ 2 )  =  1
1817eqcomi 2174 . . . . . . . . . . 11  |-  1  =  ( 1 ^ 2 )
19 fveq2 5496 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
20 abs1 11036 . . . . . . . . . . . . . 14  |-  ( abs `  1 )  =  1
2119, 20eqtrdi 2219 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
2221oveq1d 5868 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
2322rspceeqv 2852 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
2416, 18, 23mp2an 424 . . . . . . . . . 10  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
25 2sq.1 . . . . . . . . . . 11  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
26252sqlem1 13744 . . . . . . . . . 10  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
2724, 26mpbir 145 . . . . . . . . 9  |-  1  e.  S
2813, 27eqeltrdi 2261 . . . . . . . 8  |-  ( b  e.  ( 1 ... 1 )  ->  b  e.  S )
2928a1d 22 . . . . . . 7  |-  ( b  e.  ( 1 ... 1 )  ->  (
b  ||  a  ->  b  e.  S ) )
3029ralrimivw 2544 . . . . . 6  |-  ( b  e.  ( 1 ... 1 )  ->  A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
3130rgen 2523 . . . . 5  |-  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)
32 2sqlem7.2 . . . . . . . . . . . . 13  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
33 simplr 525 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
34 nncn 8886 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  CC )
3534ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  n  e.  CC )
36 ax-1cn 7867 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 pncan 8125 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
3835, 36, 37sylancl 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
3938oveq2d 5869 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
4039raleqdv 2671 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( A. b  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) ) )
4133, 40mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
42 simprr 527 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  ||  m
)
43 peano2nn 8890 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
4443ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  NN )
45 simprl 526 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  m  e.  Y
)
4625, 32, 41, 42, 44, 452sqlem9 13754 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  S
)
4746expr 373 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  m  e.  Y )  ->  (
( n  +  1 )  ||  m  -> 
( n  +  1 )  e.  S ) )
4847ralrimiva 2543 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
4948ex 114 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
50 breq2 3993 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( n  +  1 )  ||  a  <->  ( n  +  1 )  ||  m ) )
5150imbi1d 230 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S )  <-> 
( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
5251cbvralvw 2700 . . . . . . . . 9  |-  ( A. a  e.  Y  (
( n  +  1 )  ||  a  -> 
( n  +  1 )  e.  S )  <->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
5349, 52syl6ibr 161 . . . . . . . 8  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
54 breq1 3992 . . . . . . . . . . . 12  |-  ( b  =  ( n  + 
1 )  ->  (
b  ||  a  <->  ( n  +  1 )  ||  a ) )
55 eleq1 2233 . . . . . . . . . . . 12  |-  ( b  =  ( n  + 
1 )  ->  (
b  e.  S  <->  ( n  +  1 )  e.  S ) )
5654, 55imbi12d 233 . . . . . . . . . . 11  |-  ( b  =  ( n  + 
1 )  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5756ralbidv 2470 . . . . . . . . . 10  |-  ( b  =  ( n  + 
1 )  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5857ralsng 3623 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  ( A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5943, 58syl 14 . . . . . . . 8  |-  ( n  e.  NN  ->  ( A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
6053, 59sylibrd 168 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
6160ancld 323 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  -> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) ) )
62 elnnuz 9523 . . . . . . . . 9  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
63 fzsuc 10025 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6462, 63sylbi 120 . . . . . . . 8  |-  ( n  e.  NN  ->  (
1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6564raleqdv 2671 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
66 ralunb 3308 . . . . . . 7  |-  ( A. b  e.  ( (
1 ... n )  u. 
{ ( n  + 
1 ) } ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <-> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
6765, 66bitrdi 195 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  ( A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  /\  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) ) )
6861, 67sylibrd 168 . . . . 5  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
696, 8, 10, 12, 31, 68nnind 8894 . . . 4  |-  ( B  e.  NN  ->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
70 elfz1end 10011 . . . . 5  |-  ( B  e.  NN  <->  B  e.  ( 1 ... B
) )
7170biimpi 119 . . . 4  |-  ( B  e.  NN  ->  B  e.  ( 1 ... B
) )
724, 69, 71rspcdva 2839 . . 3  |-  ( B  e.  NN  ->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S ) )
73 breq2 3993 . . . . 5  |-  ( a  =  A  ->  ( B  ||  a  <->  B  ||  A
) )
7473imbi1d 230 . . . 4  |-  ( a  =  A  ->  (
( B  ||  a  ->  B  e.  S )  <-> 
( B  ||  A  ->  B  e.  S ) ) )
7574rspcv 2830 . . 3  |-  ( A  e.  Y  ->  ( A. a  e.  Y  ( B  ||  a  ->  B  e.  S )  ->  ( B  ||  A  ->  B  e.  S ) ) )
7672, 75syl5 32 . 2  |-  ( A  e.  Y  ->  ( B  e.  NN  ->  ( B  ||  A  ->  B  e.  S )
) )
77763imp 1188 1  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449    u. cun 3119   {csn 3583   class class class wbr 3989    |-> cmpt 4050   ran crn 4612   ` cfv 5198  (class class class)co 5853   CCcc 7772   1c1 7775    + caddc 7777    - cmin 8090   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965   ^cexp 10475   abscabs 10961    || cdvds 11749    gcd cgcd 11897   ZZ[_i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-gz 12322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator