ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssres Unicode version

Theorem relssres 4922
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )

Proof of Theorem relssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  Rel  A )
2 vex 2729 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2729 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4807 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
5 ssel 3136 . . . . . . . 8  |-  ( dom 
A  C_  B  ->  ( x  e.  dom  A  ->  x  e.  B ) )
64, 5syl5 32 . . . . . . 7  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  x  e.  B ) )
76ancld 323 . . . . . 6  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  A  /\  x  e.  B ) ) )
83opelres 4889 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  |`  B )  <-> 
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
97, 8syl6ibr 161 . . . . 5  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
109adantl 275 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
111, 10relssdv 4696 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  A  C_  ( A  |`  B ) )
12 resss 4908 . . 3  |-  ( A  |`  B )  C_  A
1311, 12jctil 310 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
14 eqss 3157 . 2  |-  ( ( A  |`  B )  =  A  <->  ( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
1513, 14sylibr 133 1  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    C_ wss 3116   <.cop 3579   dom cdm 4604    |` cres 4606   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-res 4616
This theorem is referenced by:  resdm  4923  resid  4940  fnresdm  5297  f1ompt  5636  setscom  12434  setsslid  12444
  Copyright terms: Public domain W3C validator