ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssres Unicode version

Theorem relssres 4852
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )

Proof of Theorem relssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  Rel  A )
2 vex 2684 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2684 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4737 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
5 ssel 3086 . . . . . . . 8  |-  ( dom 
A  C_  B  ->  ( x  e.  dom  A  ->  x  e.  B ) )
64, 5syl5 32 . . . . . . 7  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  x  e.  B ) )
76ancld 323 . . . . . 6  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  A  /\  x  e.  B ) ) )
83opelres 4819 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  |`  B )  <-> 
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
97, 8syl6ibr 161 . . . . 5  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
109adantl 275 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
111, 10relssdv 4626 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  A  C_  ( A  |`  B ) )
12 resss 4838 . . 3  |-  ( A  |`  B )  C_  A
1311, 12jctil 310 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
14 eqss 3107 . 2  |-  ( ( A  |`  B )  =  A  <->  ( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
1513, 14sylibr 133 1  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    C_ wss 3066   <.cop 3525   dom cdm 4534    |` cres 4536   Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-dm 4544  df-res 4546
This theorem is referenced by:  resdm  4853  resid  4870  fnresdm  5227  f1ompt  5564  setscom  11988  setsslid  11998
  Copyright terms: Public domain W3C validator