ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoddm1d2 Unicode version

Theorem nnoddm1d2 12057
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nnoddm1d2  |-  ( N  e.  NN  ->  ( -.  2  ||  N  <->  ( ( N  +  1 )  /  2 )  e.  NN ) )

Proof of Theorem nnoddm1d2
StepHypRef Expression
1 nnz 9342 . . 3  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 oddp1d2 12037 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
31, 2syl 14 . 2  |-  ( N  e.  NN  ->  ( -.  2  ||  N  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
4 peano2nn 8999 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
54nnred 9000 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
6 2re 9057 . . . . . . . . 9  |-  2  e.  RR
76a1i 9 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  RR )
8 nnre 8994 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
9 1red 8039 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  RR )
10 nngt0 9012 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
11 0lt1 8151 . . . . . . . . . 10  |-  0  <  1
1211a1i 9 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  1 )
138, 9, 10, 12addgt0d 8545 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
14 2pos 9078 . . . . . . . . 9  |-  0  <  2
1514a1i 9 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  2 )
165, 7, 13, 15divgt0d 8959 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( ( N  + 
1 )  /  2
) )
1716anim1i 340 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( 0  < 
( ( N  + 
1 )  /  2
)  /\  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
1817ancomd 267 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  /  2 )  e.  ZZ  /\  0  < 
( ( N  + 
1 )  /  2
) ) )
19 elnnz 9333 . . . . 5  |-  ( ( ( N  +  1 )  /  2 )  e.  NN  <->  ( (
( N  +  1 )  /  2 )  e.  ZZ  /\  0  <  ( ( N  + 
1 )  /  2
) ) )
2018, 19sylibr 134 . . . 4  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  / 
2 )  e.  NN )
2120ex 115 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  NN ) )
22 nnz 9342 . . 3  |-  ( ( ( N  +  1 )  /  2 )  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  ZZ )
2321, 22impbid1 142 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  <->  ( ( N  +  1 )  /  2 )  e.  NN ) )
243, 23bitrd 188 1  |-  ( N  e.  NN  ->  ( -.  2  ||  N  <->  ( ( N  +  1 )  /  2 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7876   0cc0 7877   1c1 7878    + caddc 7880    < clt 8059    / cdiv 8696   NNcn 8987   2c2 9038   ZZcz 9323    || cdvds 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-dvds 11937
This theorem is referenced by:  gausslemma2dlem0b  15258
  Copyright terms: Public domain W3C validator