ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinbnd Unicode version

Theorem sinbnd 12258
Description: The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
sinbnd  |-  ( A  e.  RR  ->  ( -u 1  <_  ( sin `  A )  /\  ( sin `  A )  <_ 
1 ) )

Proof of Theorem sinbnd
StepHypRef Expression
1 recoscl 12227 . . . . . 6  |-  ( A  e.  RR  ->  ( cos `  A )  e.  RR )
21sqge0d 10917 . . . . 5  |-  ( A  e.  RR  ->  0  <_  ( ( cos `  A
) ^ 2 ) )
3 resincl 12226 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  e.  RR )
43resqcld 10916 . . . . . 6  |-  ( A  e.  RR  ->  (
( sin `  A
) ^ 2 )  e.  RR )
51resqcld 10916 . . . . . 6  |-  ( A  e.  RR  ->  (
( cos `  A
) ^ 2 )  e.  RR )
64, 5addge01d 8676 . . . . 5  |-  ( A  e.  RR  ->  (
0  <_  ( ( cos `  A ) ^
2 )  <->  ( ( sin `  A ) ^
2 )  <_  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) ) )
72, 6mpbid 147 . . . 4  |-  ( A  e.  RR  ->  (
( sin `  A
) ^ 2 )  <_  ( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) ) )
8 recn 8128 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
9 sincossq 12254 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
108, 9syl 14 . . . . 5  |-  ( A  e.  RR  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
11 sq1 10850 . . . . 5  |-  ( 1 ^ 2 )  =  1
1210, 11eqtr4di 2280 . . . 4  |-  ( A  e.  RR  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( 1 ^ 2 ) )
137, 12breqtrd 4108 . . 3  |-  ( A  e.  RR  ->  (
( sin `  A
) ^ 2 )  <_  ( 1 ^ 2 ) )
14 1re 8141 . . . . . 6  |-  1  e.  RR
15 0le1 8624 . . . . . 6  |-  0  <_  1
16 lenegsq 11601 . . . . . 6  |-  ( ( ( sin `  A
)  e.  RR  /\  1  e.  RR  /\  0  <_  1 )  ->  (
( ( sin `  A
)  <_  1  /\  -u ( sin `  A
)  <_  1 )  <-> 
( ( sin `  A
) ^ 2 )  <_  ( 1 ^ 2 ) ) )
1714, 15, 16mp3an23 1363 . . . . 5  |-  ( ( sin `  A )  e.  RR  ->  (
( ( sin `  A
)  <_  1  /\  -u ( sin `  A
)  <_  1 )  <-> 
( ( sin `  A
) ^ 2 )  <_  ( 1 ^ 2 ) ) )
18 lenegcon1 8609 . . . . . . 7  |-  ( ( ( sin `  A
)  e.  RR  /\  1  e.  RR )  ->  ( -u ( sin `  A )  <_  1  <->  -u 1  <_  ( sin `  A ) ) )
1914, 18mpan2 425 . . . . . 6  |-  ( ( sin `  A )  e.  RR  ->  ( -u ( sin `  A
)  <_  1  <->  -u 1  <_ 
( sin `  A
) ) )
2019anbi2d 464 . . . . 5  |-  ( ( sin `  A )  e.  RR  ->  (
( ( sin `  A
)  <_  1  /\  -u ( sin `  A
)  <_  1 )  <-> 
( ( sin `  A
)  <_  1  /\  -u 1  <_  ( sin `  A ) ) ) )
2117, 20bitr3d 190 . . . 4  |-  ( ( sin `  A )  e.  RR  ->  (
( ( sin `  A
) ^ 2 )  <_  ( 1 ^ 2 )  <->  ( ( sin `  A )  <_ 
1  /\  -u 1  <_ 
( sin `  A
) ) ) )
223, 21syl 14 . . 3  |-  ( A  e.  RR  ->  (
( ( sin `  A
) ^ 2 )  <_  ( 1 ^ 2 )  <->  ( ( sin `  A )  <_ 
1  /\  -u 1  <_ 
( sin `  A
) ) ) )
2313, 22mpbid 147 . 2  |-  ( A  e.  RR  ->  (
( sin `  A
)  <_  1  /\  -u 1  <_  ( sin `  A ) ) )
2423ancomd 267 1  |-  ( A  e.  RR  ->  ( -u 1  <_  ( sin `  A )  /\  ( sin `  A )  <_ 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    <_ cle 8178   -ucneg 8314   2c2 9157   ^cexp 10755   sincsin 12150   cosccos 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-ico 10086  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156  df-cos 12157
This theorem is referenced by:  sinbnd2  12260  sinltxirr  12267
  Copyright terms: Public domain W3C validator