ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq2sgn Unicode version

Theorem sincosq2sgn 15299
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 15264 . . 3  |-  ( pi 
/  2 )  e.  RR
2 pire 15258 . . 3  |-  pi  e.  RR
3 rexr 8118 . . . 4  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
4 rexr 8118 . . . 4  |-  ( pi  e.  RR  ->  pi  e.  RR* )
5 elioo2 10043 . . . 4  |-  ( ( ( pi  /  2
)  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) ) )
63, 4, 5syl2an 289 . . 3  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( A  e.  ( ( pi  /  2
) (,) pi )  <-> 
( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi ) ) )
71, 2, 6mp2an 426 . 2  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) )
8 resubcl 8336 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
91, 8mpan2 425 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
10 0xr 8119 . . . . . . . . . 10  |-  0  e.  RR*
111rexri 8130 . . . . . . . . . 10  |-  ( pi 
/  2 )  e. 
RR*
12 elioo2 10043 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  0  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
) ) ) )
1310, 11, 12mp2an 426 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  0  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
) ) )
14 sincosq1sgn 15298 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
1513, 14sylbir 135 . . . . . . . 8  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  0  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
169, 15syl3an1 1283 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
17163expib 1209 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 ) )  ->  ( 0  < 
( sin `  ( A  -  ( pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2
) ) ) ) ) )
18 0re 8072 . . . . . . . . 9  |-  0  e.  RR
19 ltsub13 8516 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( 0  <  ( A  -  ( pi  /  2 ) )  <->  ( pi  /  2 )  <  ( A  -  0 ) ) )
2018, 1, 19mp3an13 1341 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  ( A  -  ( pi  / 
2 ) )  <->  ( pi  /  2 )  <  ( A  -  0 ) ) )
21 recn 8058 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
2221subid1d 8372 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
2322breq2d 4056 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  /  2
)  <  ( A  -  0 )  <->  ( pi  /  2 )  <  A
) )
2420, 23bitrd 188 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  ( A  -  ( pi  / 
2 ) )  <->  ( pi  /  2 )  <  A
) )
25 ltsubadd 8505 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
)  <->  A  <  ( ( pi  /  2 )  +  ( pi  / 
2 ) ) ) )
261, 1, 25mp3an23 1342 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 )  <->  A  <  ( ( pi  /  2
)  +  ( pi 
/  2 ) ) ) )
27 pidiv2halves 15267 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2827breq2i 4052 . . . . . . . 8  |-  ( A  <  ( ( pi 
/  2 )  +  ( pi  /  2
) )  <->  A  <  pi )
2926, 28bitrdi 196 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 )  <->  A  <  pi ) )
3024, 29anbi12d 473 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 ) )  <-> 
( ( pi  / 
2 )  <  A  /\  A  <  pi ) ) )
319resincld 12034 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
3231lt0neg2d 8589 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
3332anbi1d 465 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  -  ( pi  /  2
) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) )  <->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
3417, 30, 333imtr3d 202 . . . . 5  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  A  /\  A  <  pi )  ->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
351recni 8084 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  CC
36 pncan3 8280 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
3735, 21, 36sylancr 414 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
3837fveq2d 5580 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
399recnd 8101 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
40 coshalfpip 15294 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4139, 40syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4238, 41eqtr3d 2240 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4342breq1d 4054 . . . . . 6  |-  ( A  e.  RR  ->  (
( cos `  A
)  <  0  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
4437fveq2d 5580 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
45 sinhalfpip 15292 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4639, 45syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4744, 46eqtr3d 2240 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4847breq2d 4056 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( sin `  A )  <->  0  <  ( cos `  ( A  -  ( pi  / 
2 ) ) ) ) )
4943, 48anbi12d 473 . . . . 5  |-  ( A  e.  RR  ->  (
( ( cos `  A
)  <  0  /\  0  <  ( sin `  A
) )  <->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
5034, 49sylibrd 169 . . . 4  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  A  /\  A  <  pi )  ->  ( ( cos `  A )  <  0  /\  0  <  ( sin `  A ) ) ) )
51503impib 1204 . . 3  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi )  -> 
( ( cos `  A
)  <  0  /\  0  <  ( sin `  A
) ) )
5251ancomd 267 . 2  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi )  -> 
( 0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
537, 52sylbi 121 1  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925    + caddc 7928   RR*cxr 8106    < clt 8107    - cmin 8243   -ucneg 8244    / cdiv 8745   2c2 9087   (,)cioo 10010   sincsin 11955   cosccos 11956   picpi 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ioc 10015  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-sin 11961  df-cos 11962  df-pi 11964  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  sincosq3sgn  15300
  Copyright terms: Public domain W3C validator