ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq2sgn Unicode version

Theorem sincosq2sgn 15063
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 15028 . . 3  |-  ( pi 
/  2 )  e.  RR
2 pire 15022 . . 3  |-  pi  e.  RR
3 rexr 8072 . . . 4  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
4 rexr 8072 . . . 4  |-  ( pi  e.  RR  ->  pi  e.  RR* )
5 elioo2 9996 . . . 4  |-  ( ( ( pi  /  2
)  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) ) )
63, 4, 5syl2an 289 . . 3  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( A  e.  ( ( pi  /  2
) (,) pi )  <-> 
( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi ) ) )
71, 2, 6mp2an 426 . 2  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) )
8 resubcl 8290 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
91, 8mpan2 425 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
10 0xr 8073 . . . . . . . . . 10  |-  0  e.  RR*
111rexri 8084 . . . . . . . . . 10  |-  ( pi 
/  2 )  e. 
RR*
12 elioo2 9996 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  0  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
) ) ) )
1310, 11, 12mp2an 426 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  0  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
) ) )
14 sincosq1sgn 15062 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
1513, 14sylbir 135 . . . . . . . 8  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  0  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
169, 15syl3an1 1282 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
17163expib 1208 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 ) )  ->  ( 0  < 
( sin `  ( A  -  ( pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2
) ) ) ) ) )
18 0re 8026 . . . . . . . . 9  |-  0  e.  RR
19 ltsub13 8470 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( 0  <  ( A  -  ( pi  /  2 ) )  <->  ( pi  /  2 )  <  ( A  -  0 ) ) )
2018, 1, 19mp3an13 1339 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  ( A  -  ( pi  / 
2 ) )  <->  ( pi  /  2 )  <  ( A  -  0 ) ) )
21 recn 8012 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
2221subid1d 8326 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
2322breq2d 4045 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  /  2
)  <  ( A  -  0 )  <->  ( pi  /  2 )  <  A
) )
2420, 23bitrd 188 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  ( A  -  ( pi  / 
2 ) )  <->  ( pi  /  2 )  <  A
) )
25 ltsubadd 8459 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
)  <->  A  <  ( ( pi  /  2 )  +  ( pi  / 
2 ) ) ) )
261, 1, 25mp3an23 1340 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 )  <->  A  <  ( ( pi  /  2
)  +  ( pi 
/  2 ) ) ) )
27 pidiv2halves 15031 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2827breq2i 4041 . . . . . . . 8  |-  ( A  <  ( ( pi 
/  2 )  +  ( pi  /  2
) )  <->  A  <  pi )
2926, 28bitrdi 196 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 )  <->  A  <  pi ) )
3024, 29anbi12d 473 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 ) )  <-> 
( ( pi  / 
2 )  <  A  /\  A  <  pi ) ) )
319resincld 11888 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
3231lt0neg2d 8543 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
3332anbi1d 465 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  -  ( pi  /  2
) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) )  <->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
3417, 30, 333imtr3d 202 . . . . 5  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  A  /\  A  <  pi )  ->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
351recni 8038 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  CC
36 pncan3 8234 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
3735, 21, 36sylancr 414 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
3837fveq2d 5562 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
399recnd 8055 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
40 coshalfpip 15058 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4139, 40syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4238, 41eqtr3d 2231 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4342breq1d 4043 . . . . . 6  |-  ( A  e.  RR  ->  (
( cos `  A
)  <  0  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
4437fveq2d 5562 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
45 sinhalfpip 15056 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4639, 45syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4744, 46eqtr3d 2231 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4847breq2d 4045 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( sin `  A )  <->  0  <  ( cos `  ( A  -  ( pi  / 
2 ) ) ) ) )
4943, 48anbi12d 473 . . . . 5  |-  ( A  e.  RR  ->  (
( ( cos `  A
)  <  0  /\  0  <  ( sin `  A
) )  <->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
5034, 49sylibrd 169 . . . 4  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  A  /\  A  <  pi )  ->  ( ( cos `  A )  <  0  /\  0  <  ( sin `  A ) ) ) )
51503impib 1203 . . 3  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi )  -> 
( ( cos `  A
)  <  0  /\  0  <  ( sin `  A
) ) )
5251ancomd 267 . 2  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi )  -> 
( 0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
537, 52sylbi 121 1  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    + caddc 7882   RR*cxr 8060    < clt 8061    - cmin 8197   -ucneg 8198    / cdiv 8699   2c2 9041   (,)cioo 9963   sincsin 11809   cosccos 11810   picpi 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-pi 11818  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  sincosq3sgn  15064
  Copyright terms: Public domain W3C validator