ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq2sgn Unicode version

Theorem sincosq2sgn 14962
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 14927 . . 3  |-  ( pi 
/  2 )  e.  RR
2 pire 14921 . . 3  |-  pi  e.  RR
3 rexr 8065 . . . 4  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
4 rexr 8065 . . . 4  |-  ( pi  e.  RR  ->  pi  e.  RR* )
5 elioo2 9987 . . . 4  |-  ( ( ( pi  /  2
)  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) ) )
63, 4, 5syl2an 289 . . 3  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( A  e.  ( ( pi  /  2
) (,) pi )  <-> 
( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi ) ) )
71, 2, 6mp2an 426 . 2  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) )
8 resubcl 8283 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
91, 8mpan2 425 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
10 0xr 8066 . . . . . . . . . 10  |-  0  e.  RR*
111rexri 8077 . . . . . . . . . 10  |-  ( pi 
/  2 )  e. 
RR*
12 elioo2 9987 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  0  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
) ) ) )
1310, 11, 12mp2an 426 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  0  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
) ) )
14 sincosq1sgn 14961 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
1513, 14sylbir 135 . . . . . . . 8  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  0  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
169, 15syl3an1 1282 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( pi  /  2
) )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) ) )
17163expib 1208 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 ) )  ->  ( 0  < 
( sin `  ( A  -  ( pi  /  2 ) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2
) ) ) ) ) )
18 0re 8019 . . . . . . . . 9  |-  0  e.  RR
19 ltsub13 8462 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( 0  <  ( A  -  ( pi  /  2 ) )  <->  ( pi  /  2 )  <  ( A  -  0 ) ) )
2018, 1, 19mp3an13 1339 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  ( A  -  ( pi  / 
2 ) )  <->  ( pi  /  2 )  <  ( A  -  0 ) ) )
21 recn 8005 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
2221subid1d 8319 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
2322breq2d 4041 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  /  2
)  <  ( A  -  0 )  <->  ( pi  /  2 )  <  A
) )
2420, 23bitrd 188 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  ( A  -  ( pi  / 
2 ) )  <->  ( pi  /  2 )  <  A
) )
25 ltsubadd 8451 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( A  -  ( pi  / 
2 ) )  < 
( pi  /  2
)  <->  A  <  ( ( pi  /  2 )  +  ( pi  / 
2 ) ) ) )
261, 1, 25mp3an23 1340 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 )  <->  A  <  ( ( pi  /  2
)  +  ( pi 
/  2 ) ) ) )
27 pidiv2halves 14930 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2827breq2i 4037 . . . . . . . 8  |-  ( A  <  ( ( pi 
/  2 )  +  ( pi  /  2
) )  <->  A  <  pi )
2926, 28bitrdi 196 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 )  <->  A  <  pi ) )
3024, 29anbi12d 473 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( pi 
/  2 ) )  <-> 
( ( pi  / 
2 )  <  A  /\  A  <  pi ) ) )
319resincld 11866 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
3231lt0neg2d 8535 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
3332anbi1d 465 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  -  ( pi  /  2
) ) )  /\  0  <  ( cos `  ( A  -  ( pi  /  2 ) ) ) )  <->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
3417, 30, 333imtr3d 202 . . . . 5  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  A  /\  A  <  pi )  ->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
351recni 8031 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  CC
36 pncan3 8227 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
3735, 21, 36sylancr 414 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
3837fveq2d 5558 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
399recnd 8048 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
40 coshalfpip 14957 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4139, 40syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4238, 41eqtr3d 2228 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
4342breq1d 4039 . . . . . 6  |-  ( A  e.  RR  ->  (
( cos `  A
)  <  0  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
4437fveq2d 5558 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
45 sinhalfpip 14955 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4639, 45syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4744, 46eqtr3d 2228 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
4847breq2d 4041 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( sin `  A )  <->  0  <  ( cos `  ( A  -  ( pi  / 
2 ) ) ) ) )
4943, 48anbi12d 473 . . . . 5  |-  ( A  e.  RR  ->  (
( ( cos `  A
)  <  0  /\  0  <  ( sin `  A
) )  <->  ( -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( cos `  ( A  -  ( pi  /  2 ) ) ) ) ) )
5034, 49sylibrd 169 . . . 4  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  A  /\  A  <  pi )  ->  ( ( cos `  A )  <  0  /\  0  <  ( sin `  A ) ) ) )
51503impib 1203 . . 3  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi )  -> 
( ( cos `  A
)  <  0  /\  0  <  ( sin `  A
) ) )
5251ancomd 267 . 2  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  A  /\  A  <  pi )  -> 
( 0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
537, 52sylbi 121 1  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872    + caddc 7875   RR*cxr 8053    < clt 8054    - cmin 8190   -ucneg 8191    / cdiv 8691   2c2 9033   (,)cioo 9954   sincsin 11787   cosccos 11788   picpi 11790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ioc 9959  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-sin 11793  df-cos 11794  df-pi 11796  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  sincosq3sgn  14963
  Copyright terms: Public domain W3C validator