ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex Unicode version

Theorem divgcdcoprmex 12295
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Distinct variable groups:    A, a, b    B, a, b    M, a, b

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
21anim2i 342 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
3 zeqzmulgcd 12162 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
543adant3 1019 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
6 zeqzmulgcd 12162 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
76adantlr 477 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
87ancoms 268 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
983adant3 1019 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
10 reeanv 2667 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  <->  ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) ) )
11 zcn 9348 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
1211adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  a  e.  CC )
13 gcdcl 12158 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
142, 13syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  NN0 )
1514nn0cnd 9321 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  CC )
16153adant3 1019 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
1716adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
1812, 17mulcomd 8065 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  a ) )
19 simp3 1001 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  M  =  ( A  gcd  B ) )
2019eqcomd 2202 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  M )
2120oveq1d 5940 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  gcd  B )  x.  a )  =  ( M  x.  a ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
( A  gcd  B
)  x.  a )  =  ( M  x.  a ) )
2318, 22eqtrd 2229 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) )
25 eqeq1 2203 . . . . . . . . . 10  |-  ( A  =  ( a  x.  ( A  gcd  B
) )  ->  ( A  =  ( M  x.  a )  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2625adantr 276 . . . . . . . . 9  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  -> 
( A  =  ( M  x.  a )  <-> 
( a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) ) )
2726adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2824, 27mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  A  =  ( M  x.  a ) )
29 simpr 110 . . . . . . . 8  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  B  =  ( b  x.  ( B  gcd  A
) ) )
302ancomd 267 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
31 gcdcom 12165 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  gcd  A
)  =  ( A  gcd  B ) )
3230, 31syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
33323adant3 1019 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
3433oveq2d 5941 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( b  x.  ( B  gcd  A
) )  =  ( b  x.  ( A  gcd  B ) ) )
3534adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( b  x.  ( A  gcd  B
) ) )
36 zcn 9348 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
3736adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  b  e.  CC )
38143adant3 1019 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
3938adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
4039nn0cnd 9321 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
4137, 40mulcomd 8065 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  b ) )
4220adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  M )
4342oveq1d 5940 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
)  x.  b )  =  ( M  x.  b ) )
4435, 41, 433eqtrd 2233 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4544adantlr 477 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4629, 45sylan9eqr 2251 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  B  =  ( M  x.  b ) )
47 zcn 9348 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
48473ad2ant1 1020 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  CC )
4948ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  A  e.  CC )
5012adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  a  e.  CC )
51 simp1 999 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  ZZ )
5213ad2ant2 1021 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  ZZ )
5351, 52gcdcld 12160 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
5453nn0cnd 9321 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
5554ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
56 gcdeq0 12169 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
57 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
5856, 57biimtrdi 163 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  ->  B  =  0 ) )
5958necon3d 2411 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  =/=  0  ->  ( A  gcd  B
)  =/=  0 ) )
6059impr 379 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  =/=  0
)
61603adant3 1019 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =/=  0
)
6261ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =/=  0 )
6338ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
6463nn0zd 9463 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  ZZ )
65 0zd 9355 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  0  e.  ZZ )
66 zapne 9417 . . . . . . . . . . . . . 14  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  gcd  B ) #  0  <->  ( A  gcd  B )  =/=  0
) )
6764, 65, 66syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
) #  0  <->  ( A  gcd  B )  =/=  0
) )
6862, 67mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B ) #  0 )
6949, 50, 55, 68divmulap3d 8869 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  /  ( A  gcd  B ) )  =  a  <->  A  =  ( a  x.  ( A  gcd  B ) ) ) )
7069bicomd 141 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  =  ( a  x.  ( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a ) )
71 zcn 9348 . . . . . . . . . . . . . . 15  |-  ( B  e.  ZZ  ->  B  e.  CC )
7271adantr 276 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
73723ad2ant2 1021 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  CC )
7473ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  B  e.  CC )
7536adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  b  e.  CC )
7674, 75, 55, 68divmulap3d 8869 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( B  /  ( A  gcd  B ) )  =  b  <->  B  =  ( b  x.  ( A  gcd  B ) ) ) )
7723adant3 1019 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
78 gcdcom 12165 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
7977, 78syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
8079ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
8180oveq2d 5941 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( b  x.  ( B  gcd  A
) ) )
8281eqeq2d 2208 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( A  gcd  B
) )  <->  B  =  ( b  x.  ( B  gcd  A ) ) ) )
8376, 82bitr2d 189 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( B  gcd  A
) )  <->  ( B  /  ( A  gcd  B ) )  =  b ) )
8470, 83anbi12d 473 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  <->  ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b ) ) )
85 3anass 984 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )
8685biimpri 133 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
87863adant3 1019 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
88 divgcdcoprm0 12294 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
8987, 88syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
90 oveq12 5934 . . . . . . . . . . . 12  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  ( a  gcd  b
) )
9190eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  <->  ( a  gcd  b )  =  1 ) )
9289, 91syl5ibcom 155 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( (
( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9392ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( ( A  / 
( A  gcd  B
) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9484, 93sylbid 150 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( a  gcd  b )  =  1 ) )
9594imp 124 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  gcd  b )  =  1 )
9628, 46, 953jca 1179 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
9796ex 115 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
9897reximdva 2599 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( A  =  (
a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
9998reximdva 2599 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
10010, 99biimtrrid 153 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
1015, 9, 100mp2and 433 1  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    x. cmul 7901   # cap 8625    / cdiv 8716   NN0cn0 9266   ZZcz 9343    gcd cgcd 12145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146
This theorem is referenced by:  cncongr1  12296
  Copyright terms: Public domain W3C validator