ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex Unicode version

Theorem divgcdcoprmex 12632
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Distinct variable groups:    A, a, b    B, a, b    M, a, b

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
21anim2i 342 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
3 zeqzmulgcd 12499 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
543adant3 1041 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
6 zeqzmulgcd 12499 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
76adantlr 477 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
87ancoms 268 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
983adant3 1041 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
10 reeanv 2701 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  <->  ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) ) )
11 zcn 9459 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
1211adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  a  e.  CC )
13 gcdcl 12495 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
142, 13syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  NN0 )
1514nn0cnd 9432 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  CC )
16153adant3 1041 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
1716adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
1812, 17mulcomd 8176 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  a ) )
19 simp3 1023 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  M  =  ( A  gcd  B ) )
2019eqcomd 2235 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  M )
2120oveq1d 6022 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  gcd  B )  x.  a )  =  ( M  x.  a ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
( A  gcd  B
)  x.  a )  =  ( M  x.  a ) )
2318, 22eqtrd 2262 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) )
25 eqeq1 2236 . . . . . . . . . 10  |-  ( A  =  ( a  x.  ( A  gcd  B
) )  ->  ( A  =  ( M  x.  a )  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2625adantr 276 . . . . . . . . 9  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  -> 
( A  =  ( M  x.  a )  <-> 
( a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) ) )
2726adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2824, 27mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  A  =  ( M  x.  a ) )
29 simpr 110 . . . . . . . 8  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  B  =  ( b  x.  ( B  gcd  A
) ) )
302ancomd 267 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
31 gcdcom 12502 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  gcd  A
)  =  ( A  gcd  B ) )
3230, 31syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
33323adant3 1041 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
3433oveq2d 6023 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( b  x.  ( B  gcd  A
) )  =  ( b  x.  ( A  gcd  B ) ) )
3534adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( b  x.  ( A  gcd  B
) ) )
36 zcn 9459 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
3736adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  b  e.  CC )
38143adant3 1041 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
3938adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
4039nn0cnd 9432 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
4137, 40mulcomd 8176 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  b ) )
4220adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  M )
4342oveq1d 6022 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
)  x.  b )  =  ( M  x.  b ) )
4435, 41, 433eqtrd 2266 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4544adantlr 477 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4629, 45sylan9eqr 2284 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  B  =  ( M  x.  b ) )
47 zcn 9459 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
48473ad2ant1 1042 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  CC )
4948ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  A  e.  CC )
5012adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  a  e.  CC )
51 simp1 1021 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  ZZ )
5213ad2ant2 1043 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  ZZ )
5351, 52gcdcld 12497 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
5453nn0cnd 9432 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
5554ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
56 gcdeq0 12506 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
57 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
5856, 57biimtrdi 163 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  ->  B  =  0 ) )
5958necon3d 2444 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  =/=  0  ->  ( A  gcd  B
)  =/=  0 ) )
6059impr 379 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  =/=  0
)
61603adant3 1041 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =/=  0
)
6261ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =/=  0 )
6338ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
6463nn0zd 9575 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  ZZ )
65 0zd 9466 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  0  e.  ZZ )
66 zapne 9529 . . . . . . . . . . . . . 14  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  gcd  B ) #  0  <->  ( A  gcd  B )  =/=  0
) )
6764, 65, 66syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
) #  0  <->  ( A  gcd  B )  =/=  0
) )
6862, 67mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B ) #  0 )
6949, 50, 55, 68divmulap3d 8980 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  /  ( A  gcd  B ) )  =  a  <->  A  =  ( a  x.  ( A  gcd  B ) ) ) )
7069bicomd 141 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  =  ( a  x.  ( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a ) )
71 zcn 9459 . . . . . . . . . . . . . . 15  |-  ( B  e.  ZZ  ->  B  e.  CC )
7271adantr 276 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
73723ad2ant2 1043 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  CC )
7473ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  B  e.  CC )
7536adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  b  e.  CC )
7674, 75, 55, 68divmulap3d 8980 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( B  /  ( A  gcd  B ) )  =  b  <->  B  =  ( b  x.  ( A  gcd  B ) ) ) )
7723adant3 1041 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
78 gcdcom 12502 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
7977, 78syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
8079ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
8180oveq2d 6023 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( b  x.  ( B  gcd  A
) ) )
8281eqeq2d 2241 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( A  gcd  B
) )  <->  B  =  ( b  x.  ( B  gcd  A ) ) ) )
8376, 82bitr2d 189 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( B  gcd  A
) )  <->  ( B  /  ( A  gcd  B ) )  =  b ) )
8470, 83anbi12d 473 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  <->  ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b ) ) )
85 3anass 1006 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )
8685biimpri 133 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
87863adant3 1041 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
88 divgcdcoprm0 12631 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
8987, 88syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
90 oveq12 6016 . . . . . . . . . . . 12  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  ( a  gcd  b
) )
9190eqeq1d 2238 . . . . . . . . . . 11  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  <->  ( a  gcd  b )  =  1 ) )
9289, 91syl5ibcom 155 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( (
( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9392ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( ( A  / 
( A  gcd  B
) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9484, 93sylbid 150 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( a  gcd  b )  =  1 ) )
9594imp 124 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  gcd  b )  =  1 )
9628, 46, 953jca 1201 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
9796ex 115 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
9897reximdva 2632 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( A  =  (
a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
9998reximdva 2632 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
10010, 99biimtrrid 153 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
1015, 9, 100mp2and 433 1  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   class class class wbr 4083  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    x. cmul 8012   # cap 8736    / cdiv 8827   NN0cn0 9377   ZZcz 9454    gcd cgcd 12482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483
This theorem is referenced by:  cncongr1  12633
  Copyright terms: Public domain W3C validator