ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex Unicode version

Theorem divgcdcoprmex 12034
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Distinct variable groups:    A, a, b    B, a, b    M, a, b

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
21anim2i 340 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
3 zeqzmulgcd 11903 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
543adant3 1007 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
6 zeqzmulgcd 11903 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
76adantlr 469 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
87ancoms 266 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
983adant3 1007 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
10 reeanv 2635 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  <->  ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) ) )
11 zcn 9196 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
1211adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  a  e.  CC )
13 gcdcl 11899 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
142, 13syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  NN0 )
1514nn0cnd 9169 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  CC )
16153adant3 1007 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
1716adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
1812, 17mulcomd 7920 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  a ) )
19 simp3 989 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  M  =  ( A  gcd  B ) )
2019eqcomd 2171 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  M )
2120oveq1d 5857 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  gcd  B )  x.  a )  =  ( M  x.  a ) )
2221adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
( A  gcd  B
)  x.  a )  =  ( M  x.  a ) )
2318, 22eqtrd 2198 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) )
2423ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) )
25 eqeq1 2172 . . . . . . . . . 10  |-  ( A  =  ( a  x.  ( A  gcd  B
) )  ->  ( A  =  ( M  x.  a )  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2625adantr 274 . . . . . . . . 9  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  -> 
( A  =  ( M  x.  a )  <-> 
( a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) ) )
2726adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2824, 27mpbird 166 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  A  =  ( M  x.  a ) )
29 simpr 109 . . . . . . . 8  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  B  =  ( b  x.  ( B  gcd  A
) ) )
302ancomd 265 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
31 gcdcom 11906 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  gcd  A
)  =  ( A  gcd  B ) )
3230, 31syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
33323adant3 1007 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
3433oveq2d 5858 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( b  x.  ( B  gcd  A
) )  =  ( b  x.  ( A  gcd  B ) ) )
3534adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( b  x.  ( A  gcd  B
) ) )
36 zcn 9196 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
3736adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  b  e.  CC )
38143adant3 1007 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
3938adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
4039nn0cnd 9169 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
4137, 40mulcomd 7920 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  b ) )
4220adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  M )
4342oveq1d 5857 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
)  x.  b )  =  ( M  x.  b ) )
4435, 41, 433eqtrd 2202 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4544adantlr 469 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4629, 45sylan9eqr 2221 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  B  =  ( M  x.  b ) )
47 zcn 9196 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
48473ad2ant1 1008 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  CC )
4948ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  A  e.  CC )
5012adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  a  e.  CC )
51 simp1 987 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  ZZ )
5213ad2ant2 1009 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  ZZ )
5351, 52gcdcld 11901 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
5453nn0cnd 9169 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
5554ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
56 gcdeq0 11910 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
57 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
5856, 57syl6bi 162 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  ->  B  =  0 ) )
5958necon3d 2380 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  =/=  0  ->  ( A  gcd  B
)  =/=  0 ) )
6059impr 377 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  =/=  0
)
61603adant3 1007 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =/=  0
)
6261ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =/=  0 )
6338ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
6463nn0zd 9311 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  ZZ )
65 0zd 9203 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  0  e.  ZZ )
66 zapne 9265 . . . . . . . . . . . . . 14  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  gcd  B ) #  0  <->  ( A  gcd  B )  =/=  0
) )
6764, 65, 66syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
) #  0  <->  ( A  gcd  B )  =/=  0
) )
6862, 67mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B ) #  0 )
6949, 50, 55, 68divmulap3d 8721 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  /  ( A  gcd  B ) )  =  a  <->  A  =  ( a  x.  ( A  gcd  B ) ) ) )
7069bicomd 140 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  =  ( a  x.  ( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a ) )
71 zcn 9196 . . . . . . . . . . . . . . 15  |-  ( B  e.  ZZ  ->  B  e.  CC )
7271adantr 274 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
73723ad2ant2 1009 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  CC )
7473ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  B  e.  CC )
7536adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  b  e.  CC )
7674, 75, 55, 68divmulap3d 8721 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( B  /  ( A  gcd  B ) )  =  b  <->  B  =  ( b  x.  ( A  gcd  B ) ) ) )
7723adant3 1007 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
78 gcdcom 11906 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
7977, 78syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
8079ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
8180oveq2d 5858 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( b  x.  ( B  gcd  A
) ) )
8281eqeq2d 2177 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( A  gcd  B
) )  <->  B  =  ( b  x.  ( B  gcd  A ) ) ) )
8376, 82bitr2d 188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( B  gcd  A
) )  <->  ( B  /  ( A  gcd  B ) )  =  b ) )
8470, 83anbi12d 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  <->  ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b ) ) )
85 3anass 972 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )
8685biimpri 132 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
87863adant3 1007 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
88 divgcdcoprm0 12033 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
8987, 88syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
90 oveq12 5851 . . . . . . . . . . . 12  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  ( a  gcd  b
) )
9190eqeq1d 2174 . . . . . . . . . . 11  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  <->  ( a  gcd  b )  =  1 ) )
9289, 91syl5ibcom 154 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( (
( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9392ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( ( A  / 
( A  gcd  B
) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9484, 93sylbid 149 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( a  gcd  b )  =  1 ) )
9594imp 123 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  gcd  b )  =  1 )
9628, 46, 953jca 1167 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
9796ex 114 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
9897reximdva 2568 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( A  =  (
a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
9998reximdva 2568 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
10010, 99syl5bir 152 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
1015, 9, 100mp2and 430 1  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    x. cmul 7758   # cap 8479    / cdiv 8568   NN0cn0 9114   ZZcz 9191    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  cncongr1  12035
  Copyright terms: Public domain W3C validator