ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex Unicode version

Theorem divgcdcoprmex 11623
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Distinct variable groups:    A, a, b    B, a, b    M, a, b

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
21anim2i 337 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
3 zeqzmulgcd 11501 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
543adant3 982 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
6 zeqzmulgcd 11501 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
76adantlr 466 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
87ancoms 266 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
983adant3 982 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
10 reeanv 2572 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  <->  ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) ) )
11 zcn 8957 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
1211adantl 273 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  a  e.  CC )
13 gcdcl 11497 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
142, 13syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  NN0 )
1514nn0cnd 8930 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  CC )
16153adant3 982 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
1716adantr 272 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
1812, 17mulcomd 7705 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  a ) )
19 simp3 964 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  M  =  ( A  gcd  B ) )
2019eqcomd 2118 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  M )
2120oveq1d 5741 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  gcd  B )  x.  a )  =  ( M  x.  a ) )
2221adantr 272 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
( A  gcd  B
)  x.  a )  =  ( M  x.  a ) )
2318, 22eqtrd 2145 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) )
2423ad2antrr 477 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) )
25 eqeq1 2119 . . . . . . . . . 10  |-  ( A  =  ( a  x.  ( A  gcd  B
) )  ->  ( A  =  ( M  x.  a )  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2625adantr 272 . . . . . . . . 9  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  -> 
( A  =  ( M  x.  a )  <-> 
( a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) ) )
2726adantl 273 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2824, 27mpbird 166 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  A  =  ( M  x.  a ) )
29 simpr 109 . . . . . . . 8  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  B  =  ( b  x.  ( B  gcd  A
) ) )
302ancomd 265 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
31 gcdcom 11504 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  gcd  A
)  =  ( A  gcd  B ) )
3230, 31syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
33323adant3 982 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
3433oveq2d 5742 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( b  x.  ( B  gcd  A
) )  =  ( b  x.  ( A  gcd  B ) ) )
3534adantr 272 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( b  x.  ( A  gcd  B
) ) )
36 zcn 8957 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
3736adantl 273 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  b  e.  CC )
38143adant3 982 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
3938adantr 272 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
4039nn0cnd 8930 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
4137, 40mulcomd 7705 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  b ) )
4220adantr 272 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  M )
4342oveq1d 5741 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
)  x.  b )  =  ( M  x.  b ) )
4435, 41, 433eqtrd 2149 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4544adantlr 466 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4629, 45sylan9eqr 2167 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  B  =  ( M  x.  b ) )
47 zcn 8957 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
48473ad2ant1 983 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  CC )
4948ad2antrr 477 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  A  e.  CC )
5012adantr 272 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  a  e.  CC )
51 simp1 962 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  ZZ )
5213ad2ant2 984 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  ZZ )
5351, 52gcdcld 11499 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
5453nn0cnd 8930 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
5554ad2antrr 477 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
56 gcdeq0 11507 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
57 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
5856, 57syl6bi 162 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  ->  B  =  0 ) )
5958necon3d 2324 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  =/=  0  ->  ( A  gcd  B
)  =/=  0 ) )
6059impr 374 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  =/=  0
)
61603adant3 982 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =/=  0
)
6261ad2antrr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =/=  0 )
6338ad2antrr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
6463nn0zd 9069 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  ZZ )
65 0zd 8964 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  0  e.  ZZ )
66 zapne 9023 . . . . . . . . . . . . . 14  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  gcd  B ) #  0  <->  ( A  gcd  B )  =/=  0
) )
6764, 65, 66syl2anc 406 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
) #  0  <->  ( A  gcd  B )  =/=  0
) )
6862, 67mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B ) #  0 )
6949, 50, 55, 68divmulap3d 8492 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  /  ( A  gcd  B ) )  =  a  <->  A  =  ( a  x.  ( A  gcd  B ) ) ) )
7069bicomd 140 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  =  ( a  x.  ( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a ) )
71 zcn 8957 . . . . . . . . . . . . . . 15  |-  ( B  e.  ZZ  ->  B  e.  CC )
7271adantr 272 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
73723ad2ant2 984 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  CC )
7473ad2antrr 477 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  B  e.  CC )
7536adantl 273 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  b  e.  CC )
7674, 75, 55, 68divmulap3d 8492 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( B  /  ( A  gcd  B ) )  =  b  <->  B  =  ( b  x.  ( A  gcd  B ) ) ) )
7723adant3 982 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
78 gcdcom 11504 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
7977, 78syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
8079ad2antrr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
8180oveq2d 5742 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( b  x.  ( B  gcd  A
) ) )
8281eqeq2d 2124 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( A  gcd  B
) )  <->  B  =  ( b  x.  ( B  gcd  A ) ) ) )
8376, 82bitr2d 188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( B  gcd  A
) )  <->  ( B  /  ( A  gcd  B ) )  =  b ) )
8470, 83anbi12d 462 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  <->  ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b ) ) )
85 3anass 947 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )
8685biimpri 132 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
87863adant3 982 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
88 divgcdcoprm0 11622 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
8987, 88syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
90 oveq12 5735 . . . . . . . . . . . 12  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  ( a  gcd  b
) )
9190eqeq1d 2121 . . . . . . . . . . 11  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  <->  ( a  gcd  b )  =  1 ) )
9289, 91syl5ibcom 154 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( (
( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9392ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( ( A  / 
( A  gcd  B
) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9484, 93sylbid 149 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( a  gcd  b )  =  1 ) )
9594imp 123 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  gcd  b )  =  1 )
9628, 46, 953jca 1142 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
9796ex 114 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
9897reximdva 2506 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( A  =  (
a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
9998reximdva 2506 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
10010, 99syl5bir 152 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
1015, 9, 100mp2and 427 1  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 943    = wceq 1312    e. wcel 1461    =/= wne 2280   E.wrex 2389   class class class wbr 3893  (class class class)co 5726   CCcc 7539   0cc0 7541   1c1 7542    x. cmul 7546   # cap 8255    / cdiv 8339   NN0cn0 8875   ZZcz 8952    gcd cgcd 11477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-sup 6821  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-fz 9678  df-fzo 9807  df-fl 9930  df-mod 9983  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657  df-dvds 11336  df-gcd 11478
This theorem is referenced by:  cncongr1  11624
  Copyright terms: Public domain W3C validator