ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0oddm1d2 Unicode version

Theorem nn0oddm1d2 11513
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nn0oddm1d2  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  ( ( N  -  1 )  /  2 )  e. 
NN0 ) )

Proof of Theorem nn0oddm1d2
StepHypRef Expression
1 nn0z 9028 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2 oddp1d2 11494 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
31, 2syl 14 . 2  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
4 nn0re 8940 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
5 1red 7745 . . . . . . . . 9  |-  ( N  e.  NN0  ->  1  e.  RR )
6 nn0ge0 8956 . . . . . . . . 9  |-  ( N  e.  NN0  ->  0  <_  N )
7 0le1 8207 . . . . . . . . . 10  |-  0  <_  1
87a1i 9 . . . . . . . . 9  |-  ( N  e.  NN0  ->  0  <_ 
1 )
94, 5, 6, 8addge0d 8247 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_ 
( N  +  1 ) )
10 peano2nn0 8971 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1110nn0red 8985 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  RR )
12 2re 8750 . . . . . . . . . 10  |-  2  e.  RR
1312a1i 9 . . . . . . . . 9  |-  ( N  e.  NN0  ->  2  e.  RR )
14 2pos 8771 . . . . . . . . . 10  |-  0  <  2
1514a1i 9 . . . . . . . . 9  |-  ( N  e.  NN0  ->  0  <  2 )
16 ge0div 8589 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  RR  /\  2  e.  RR  /\  0  <  2 )  ->  (
0  <_  ( N  +  1 )  <->  0  <_  ( ( N  +  1 )  /  2 ) ) )
1711, 13, 15, 16syl3anc 1199 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 0  <_  ( N  + 
1 )  <->  0  <_  ( ( N  +  1 )  /  2 ) ) )
189, 17mpbid 146 . . . . . . 7  |-  ( N  e.  NN0  ->  0  <_ 
( ( N  + 
1 )  /  2
) )
1918anim1i 336 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( 0  <_ 
( ( N  + 
1 )  /  2
)  /\  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
2019ancomd 265 . . . . 5  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( N  + 
1 )  /  2
) ) )
21 elnn0z 9021 . . . . 5  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  <->  ( ( ( N  +  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( N  + 
1 )  /  2
) ) )
2220, 21sylibr 133 . . . 4  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  / 
2 )  e.  NN0 )
2322ex 114 . . 3  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  (
( N  +  1 )  /  2 )  e.  NN0 ) )
24 nn0z 9028 . . 3  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  ZZ )
2523, 24impbid1 141 . 2  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  ZZ  <->  ( ( N  +  1 )  /  2 )  e. 
NN0 ) )
26 nn0ob 11512 . 2  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  <->  ( ( N  -  1 )  / 
2 )  e.  NN0 ) )
273, 25, 263bitrd 213 1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  ( ( N  -  1 )  /  2 )  e. 
NN0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583   0cc0 7584   1c1 7585    + caddc 7587    < clt 7764    <_ cle 7765    - cmin 7897    / cdiv 8395   2c2 8731   NN0cn0 8931   ZZcz 9008    || cdvds 11400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-xor 1337  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-dvds 11401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator