ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri Unicode version

Theorem fimax2gtri 6957
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po  |-  ( ph  ->  R  Po  A )
fimax2gtri.tri  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
fimax2gtri.fin  |-  ( ph  ->  A  e.  Fin )
fimax2gtri.n0  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fimax2gtri  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, R, y   
x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem fimax2gtri
Dummy variables  z  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2690 . . 3  |-  ( w  =  (/)  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  (/)  -.  x R y ) )
21rexbidv 2495 . 2  |-  ( w  =  (/)  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  (/)  -.  x R y ) )
3 raleq 2690 . . 3  |-  ( w  =  u  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  u  -.  x R y ) )
43rexbidv 2495 . 2  |-  ( w  =  u  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  u  -.  x R y ) )
5 raleq 2690 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
65rexbidv 2495 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
7 raleq 2690 . . 3  |-  ( w  =  A  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  A  -.  x R y ) )
87rexbidv 2495 . 2  |-  ( w  =  A  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
9 fimax2gtri.n0 . . . . 5  |-  ( ph  ->  A  =/=  (/) )
10 fimax2gtri.fin . . . . . 6  |-  ( ph  ->  A  e.  Fin )
11 fin0 6941 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
139, 12mpbid 147 . . . 4  |-  ( ph  ->  E. x  x  e.  A )
14 ral0 3548 . . . . . 6  |-  A. y  e.  (/)  -.  x R y
1514biantru 302 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1615exbii 1616 . . . 4  |-  ( E. x  x  e.  A  <->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1713, 16sylib 122 . . 3  |-  ( ph  ->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
18 df-rex 2478 . . 3  |-  ( E. x  e.  A  A. y  e.  (/)  -.  x R y  <->  E. x
( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1917, 18sylibr 134 . 2  |-  ( ph  ->  E. x  e.  A  A. y  e.  (/)  -.  x R y )
20 breq1 4032 . . . . . 6  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
2120notbid 668 . . . . 5  |-  ( x  =  z  ->  ( -.  x R y  <->  -.  z R y ) )
2221ralbidv 2494 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  u  -.  x R y  <->  A. y  e.  u  -.  z R y ) )
2322cbvrexv 2727 . . 3  |-  ( E. x  e.  A  A. y  e.  u  -.  x R y  <->  E. z  e.  A  A. y  e.  u  -.  z R y )
24 fimax2gtri.po . . . . . . 7  |-  ( ph  ->  R  Po  A )
2524ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  R  Po  A )
26 fimax2gtri.tri . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2726ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2810ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  e.  Fin )
299ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  =/=  (/) )
30 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  e.  Fin )
31 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  C_  A
)
3231ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  C_  A )
33 simplr 528 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
z  e.  A )
34 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  ( A  \  u ) )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  ( A 
\  u ) )
3635eldifad 3164 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  A )
3735eldifbd 3165 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  -.  v  e.  u
)
38 simpr 110 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. y  e.  u  -.  z R y )
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 6956 . . . . 5  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y )
4039ex 115 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  ->  ( A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y ) )
4140rexlimdva 2611 . . 3  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. z  e.  A  A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
4223, 41biimtrid 152 . 2  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. x  e.  A  A. y  e.  u  -.  x R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
432, 4, 6, 8, 19, 42, 10findcard2sd 6948 1  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473    \ cdif 3150    u. cun 3151    C_ wss 3153   (/)c0 3446   {csn 3618   class class class wbr 4029    Po wpo 4325   Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  fimaxq  10898
  Copyright terms: Public domain W3C validator