Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fimax2gtri | Unicode version |
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.) |
Ref | Expression |
---|---|
fimax2gtri.po | |
fimax2gtri.tri | |
fimax2gtri.fin | |
fimax2gtri.n0 |
Ref | Expression |
---|---|
fimax2gtri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2652 | . . 3 | |
2 | 1 | rexbidv 2458 | . 2 |
3 | raleq 2652 | . . 3 | |
4 | 3 | rexbidv 2458 | . 2 |
5 | raleq 2652 | . . 3 | |
6 | 5 | rexbidv 2458 | . 2 |
7 | raleq 2652 | . . 3 | |
8 | 7 | rexbidv 2458 | . 2 |
9 | fimax2gtri.n0 | . . . . 5 | |
10 | fimax2gtri.fin | . . . . . 6 | |
11 | fin0 6830 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | 9, 12 | mpbid 146 | . . . 4 |
14 | ral0 3495 | . . . . . 6 | |
15 | 14 | biantru 300 | . . . . 5 |
16 | 15 | exbii 1585 | . . . 4 |
17 | 13, 16 | sylib 121 | . . 3 |
18 | df-rex 2441 | . . 3 | |
19 | 17, 18 | sylibr 133 | . 2 |
20 | breq1 3968 | . . . . . 6 | |
21 | 20 | notbid 657 | . . . . 5 |
22 | 21 | ralbidv 2457 | . . . 4 |
23 | 22 | cbvrexv 2681 | . . 3 |
24 | fimax2gtri.po | . . . . . . 7 | |
25 | 24 | ad4antr 486 | . . . . . 6 |
26 | fimax2gtri.tri | . . . . . . 7 | |
27 | 26 | ad4antr 486 | . . . . . 6 |
28 | 10 | ad4antr 486 | . . . . . 6 |
29 | 9 | ad4antr 486 | . . . . . 6 |
30 | simp-4r 532 | . . . . . 6 | |
31 | simprl 521 | . . . . . . 7 | |
32 | 31 | ad2antrr 480 | . . . . . 6 |
33 | simplr 520 | . . . . . 6 | |
34 | simprr 522 | . . . . . . . 8 | |
35 | 34 | ad2antrr 480 | . . . . . . 7 |
36 | 35 | eldifad 3113 | . . . . . 6 |
37 | 35 | eldifbd 3114 | . . . . . 6 |
38 | simpr 109 | . . . . . 6 | |
39 | 25, 27, 28, 29, 30, 32, 33, 36, 37, 38 | fimax2gtrilemstep 6845 | . . . . 5 |
40 | 39 | ex 114 | . . . 4 |
41 | 40 | rexlimdva 2574 | . . 3 |
42 | 23, 41 | syl5bi 151 | . 2 |
43 | 2, 4, 6, 8, 19, 42, 10 | findcard2sd 6837 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 962 wceq 1335 wex 1472 wcel 2128 wne 2327 wral 2435 wrex 2436 cdif 3099 cun 3100 wss 3102 c0 3394 csn 3560 class class class wbr 3965 wpo 4254 cfn 6685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-er 6480 df-en 6686 df-fin 6688 |
This theorem is referenced by: fimaxq 10701 |
Copyright terms: Public domain | W3C validator |