ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri Unicode version

Theorem fimax2gtri 6879
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po  |-  ( ph  ->  R  Po  A )
fimax2gtri.tri  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
fimax2gtri.fin  |-  ( ph  ->  A  e.  Fin )
fimax2gtri.n0  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fimax2gtri  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, R, y   
x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem fimax2gtri
Dummy variables  z  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2665 . . 3  |-  ( w  =  (/)  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  (/)  -.  x R y ) )
21rexbidv 2471 . 2  |-  ( w  =  (/)  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  (/)  -.  x R y ) )
3 raleq 2665 . . 3  |-  ( w  =  u  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  u  -.  x R y ) )
43rexbidv 2471 . 2  |-  ( w  =  u  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  u  -.  x R y ) )
5 raleq 2665 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
65rexbidv 2471 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
7 raleq 2665 . . 3  |-  ( w  =  A  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  A  -.  x R y ) )
87rexbidv 2471 . 2  |-  ( w  =  A  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
9 fimax2gtri.n0 . . . . 5  |-  ( ph  ->  A  =/=  (/) )
10 fimax2gtri.fin . . . . . 6  |-  ( ph  ->  A  e.  Fin )
11 fin0 6863 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
139, 12mpbid 146 . . . 4  |-  ( ph  ->  E. x  x  e.  A )
14 ral0 3516 . . . . . 6  |-  A. y  e.  (/)  -.  x R y
1514biantru 300 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1615exbii 1598 . . . 4  |-  ( E. x  x  e.  A  <->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1713, 16sylib 121 . . 3  |-  ( ph  ->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
18 df-rex 2454 . . 3  |-  ( E. x  e.  A  A. y  e.  (/)  -.  x R y  <->  E. x
( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1917, 18sylibr 133 . 2  |-  ( ph  ->  E. x  e.  A  A. y  e.  (/)  -.  x R y )
20 breq1 3992 . . . . . 6  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
2120notbid 662 . . . . 5  |-  ( x  =  z  ->  ( -.  x R y  <->  -.  z R y ) )
2221ralbidv 2470 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  u  -.  x R y  <->  A. y  e.  u  -.  z R y ) )
2322cbvrexv 2697 . . 3  |-  ( E. x  e.  A  A. y  e.  u  -.  x R y  <->  E. z  e.  A  A. y  e.  u  -.  z R y )
24 fimax2gtri.po . . . . . . 7  |-  ( ph  ->  R  Po  A )
2524ad4antr 491 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  R  Po  A )
26 fimax2gtri.tri . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2726ad4antr 491 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2810ad4antr 491 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  e.  Fin )
299ad4antr 491 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  =/=  (/) )
30 simp-4r 537 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  e.  Fin )
31 simprl 526 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  C_  A
)
3231ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  C_  A )
33 simplr 525 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
z  e.  A )
34 simprr 527 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  ( A  \  u ) )
3534ad2antrr 485 . . . . . . 7  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  ( A 
\  u ) )
3635eldifad 3132 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  A )
3735eldifbd 3133 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  -.  v  e.  u
)
38 simpr 109 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. y  e.  u  -.  z R y )
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 6878 . . . . 5  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y )
4039ex 114 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  ->  ( A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y ) )
4140rexlimdva 2587 . . 3  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. z  e.  A  A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
4223, 41syl5bi 151 . 2  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. x  e.  A  A. y  e.  u  -.  x R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
432, 4, 6, 8, 19, 42, 10findcard2sd 6870 1  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 972    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449    \ cdif 3118    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583   class class class wbr 3989    Po wpo 4279   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  fimaxq  10762
  Copyright terms: Public domain W3C validator