ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri Unicode version

Theorem fimax2gtri 6597
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po  |-  ( ph  ->  R  Po  A )
fimax2gtri.tri  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
fimax2gtri.fin  |-  ( ph  ->  A  e.  Fin )
fimax2gtri.n0  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fimax2gtri  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, R, y   
x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem fimax2gtri
Dummy variables  z  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2562 . . 3  |-  ( w  =  (/)  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  (/)  -.  x R y ) )
21rexbidv 2381 . 2  |-  ( w  =  (/)  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  (/)  -.  x R y ) )
3 raleq 2562 . . 3  |-  ( w  =  u  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  u  -.  x R y ) )
43rexbidv 2381 . 2  |-  ( w  =  u  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  u  -.  x R y ) )
5 raleq 2562 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
65rexbidv 2381 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
7 raleq 2562 . . 3  |-  ( w  =  A  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  A  -.  x R y ) )
87rexbidv 2381 . 2  |-  ( w  =  A  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
9 fimax2gtri.n0 . . . . 5  |-  ( ph  ->  A  =/=  (/) )
10 fimax2gtri.fin . . . . . 6  |-  ( ph  ->  A  e.  Fin )
11 fin0 6581 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
139, 12mpbid 145 . . . 4  |-  ( ph  ->  E. x  x  e.  A )
14 ral0 3379 . . . . . 6  |-  A. y  e.  (/)  -.  x R y
1514biantru 296 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1615exbii 1541 . . . 4  |-  ( E. x  x  e.  A  <->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1713, 16sylib 120 . . 3  |-  ( ph  ->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
18 df-rex 2365 . . 3  |-  ( E. x  e.  A  A. y  e.  (/)  -.  x R y  <->  E. x
( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1917, 18sylibr 132 . 2  |-  ( ph  ->  E. x  e.  A  A. y  e.  (/)  -.  x R y )
20 breq1 3840 . . . . . 6  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
2120notbid 627 . . . . 5  |-  ( x  =  z  ->  ( -.  x R y  <->  -.  z R y ) )
2221ralbidv 2380 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  u  -.  x R y  <->  A. y  e.  u  -.  z R y ) )
2322cbvrexv 2591 . . 3  |-  ( E. x  e.  A  A. y  e.  u  -.  x R y  <->  E. z  e.  A  A. y  e.  u  -.  z R y )
24 fimax2gtri.po . . . . . . 7  |-  ( ph  ->  R  Po  A )
2524ad4antr 478 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  R  Po  A )
26 fimax2gtri.tri . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2726ad4antr 478 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2810ad4antr 478 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  e.  Fin )
299ad4antr 478 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  =/=  (/) )
30 simp-4r 509 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  e.  Fin )
31 simprl 498 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  C_  A
)
3231ad2antrr 472 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  C_  A )
33 simplr 497 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
z  e.  A )
34 simprr 499 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  ( A  \  u ) )
3534ad2antrr 472 . . . . . . 7  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  ( A 
\  u ) )
3635eldifad 3008 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  A )
3735eldifbd 3009 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  -.  v  e.  u
)
38 simpr 108 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. y  e.  u  -.  z R y )
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 6596 . . . . 5  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y )
4039ex 113 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  ->  ( A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y ) )
4140rexlimdva 2489 . . 3  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. z  e.  A  A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
4223, 41syl5bi 150 . 2  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. x  e.  A  A. y  e.  u  -.  x R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
432, 4, 6, 8, 19, 42, 10findcard2sd 6588 1  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 923    = wceq 1289   E.wex 1426    e. wcel 1438    =/= wne 2255   A.wral 2359   E.wrex 2360    \ cdif 2994    u. cun 2995    C_ wss 2997   (/)c0 3284   {csn 3441   class class class wbr 3837    Po wpo 4112   Fincfn 6437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-er 6272  df-en 6438  df-fin 6440
This theorem is referenced by:  fimaxq  10200
  Copyright terms: Public domain W3C validator