ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri Unicode version

Theorem fimax2gtri 7063
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po  |-  ( ph  ->  R  Po  A )
fimax2gtri.tri  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
fimax2gtri.fin  |-  ( ph  ->  A  e.  Fin )
fimax2gtri.n0  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fimax2gtri  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Distinct variable groups:    x, R, y   
x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem fimax2gtri
Dummy variables  z  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2728 . . 3  |-  ( w  =  (/)  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  (/)  -.  x R y ) )
21rexbidv 2531 . 2  |-  ( w  =  (/)  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  (/)  -.  x R y ) )
3 raleq 2728 . . 3  |-  ( w  =  u  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  u  -.  x R y ) )
43rexbidv 2531 . 2  |-  ( w  =  u  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  u  -.  x R y ) )
5 raleq 2728 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
65rexbidv 2531 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
7 raleq 2728 . . 3  |-  ( w  =  A  ->  ( A. y  e.  w  -.  x R y  <->  A. y  e.  A  -.  x R y ) )
87rexbidv 2531 . 2  |-  ( w  =  A  ->  ( E. x  e.  A  A. y  e.  w  -.  x R y  <->  E. x  e.  A  A. y  e.  A  -.  x R y ) )
9 fimax2gtri.n0 . . . . 5  |-  ( ph  ->  A  =/=  (/) )
10 fimax2gtri.fin . . . . . 6  |-  ( ph  ->  A  e.  Fin )
11 fin0 7047 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
139, 12mpbid 147 . . . 4  |-  ( ph  ->  E. x  x  e.  A )
14 ral0 3593 . . . . . 6  |-  A. y  e.  (/)  -.  x R y
1514biantru 302 . . . . 5  |-  ( x  e.  A  <->  ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1615exbii 1651 . . . 4  |-  ( E. x  x  e.  A  <->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1713, 16sylib 122 . . 3  |-  ( ph  ->  E. x ( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
18 df-rex 2514 . . 3  |-  ( E. x  e.  A  A. y  e.  (/)  -.  x R y  <->  E. x
( x  e.  A  /\  A. y  e.  (/)  -.  x R y ) )
1917, 18sylibr 134 . 2  |-  ( ph  ->  E. x  e.  A  A. y  e.  (/)  -.  x R y )
20 breq1 4086 . . . . . 6  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
2120notbid 671 . . . . 5  |-  ( x  =  z  ->  ( -.  x R y  <->  -.  z R y ) )
2221ralbidv 2530 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  u  -.  x R y  <->  A. y  e.  u  -.  z R y ) )
2322cbvrexv 2766 . . 3  |-  ( E. x  e.  A  A. y  e.  u  -.  x R y  <->  E. z  e.  A  A. y  e.  u  -.  z R y )
24 fimax2gtri.po . . . . . . 7  |-  ( ph  ->  R  Po  A )
2524ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  R  Po  A )
26 fimax2gtri.tri . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2726ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2810ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  e.  Fin )
299ad4antr 494 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A  =/=  (/) )
30 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  e.  Fin )
31 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  C_  A
)
3231ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  u  C_  A )
33 simplr 528 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
z  e.  A )
34 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  ( A  \  u ) )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  ( A 
\  u ) )
3635eldifad 3208 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  -> 
v  e.  A )
3735eldifbd 3209 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  -.  v  e.  u
)
38 simpr 110 . . . . . 6  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  A. y  e.  u  -.  z R y )
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 7062 . . . . 5  |-  ( ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  /\  A. y  e.  u  -.  z R y )  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y )
4039ex 115 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  z  e.  A )  ->  ( A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  (
u  u.  { v } )  -.  x R y ) )
4140rexlimdva 2648 . . 3  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. z  e.  A  A. y  e.  u  -.  z R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
4223, 41biimtrid 152 . 2  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( E. x  e.  A  A. y  e.  u  -.  x R y  ->  E. x  e.  A  A. y  e.  ( u  u.  {
v } )  -.  x R y ) )
432, 4, 6, 8, 19, 42, 10findcard2sd 7054 1  |-  ( ph  ->  E. x  e.  A  A. y  e.  A  -.  x R y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509    \ cdif 3194    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   class class class wbr 4083    Po wpo 4385   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by:  fimaxq  11049
  Copyright terms: Public domain W3C validator