ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab Unicode version

Theorem resopab 4935
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4623 . 2  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  ( { <. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )
2 df-xp 4617 . . . . . 6  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
3 vex 2733 . . . . . . . 8  |-  y  e. 
_V
43biantru 300 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  A  /\  y  e.  _V ) )
54opabbii 4056 . . . . . 6  |-  { <. x ,  y >.  |  x  e.  A }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
62, 5eqtr4i 2194 . . . . 5  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  x  e.  A }
76ineq2i 3325 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )
8 incom 3319 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )  =  ( { <. x ,  y
>.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )
97, 8eqtri 2191 . . 3  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  x  e.  A }  i^i  {
<. x ,  y >.  |  ph } )
10 inopab 4743 . . 3  |-  ( {
<. x ,  y >.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
119, 10eqtri 2191 . 2  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
121, 11eqtri 2191 1  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120   {copab 4049    X. cxp 4609    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by:  resopab2  4938  opabresid  4944  mptpreima  5104  isarep2  5285  resoprab  5949  df1st2  6198  df2nd2  6199
  Copyright terms: Public domain W3C validator