ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab Unicode version

Theorem resopab 5048
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4730 . 2  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  ( { <. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )
2 df-xp 4724 . . . . . 6  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
3 vex 2802 . . . . . . . 8  |-  y  e. 
_V
43biantru 302 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  A  /\  y  e.  _V ) )
54opabbii 4150 . . . . . 6  |-  { <. x ,  y >.  |  x  e.  A }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
62, 5eqtr4i 2253 . . . . 5  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  x  e.  A }
76ineq2i 3402 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )
8 incom 3396 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )  =  ( { <. x ,  y
>.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )
97, 8eqtri 2250 . . 3  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  x  e.  A }  i^i  {
<. x ,  y >.  |  ph } )
10 inopab 4853 . . 3  |-  ( {
<. x ,  y >.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
119, 10eqtri 2250 . 2  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
121, 11eqtri 2250 1  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   {copab 4143    X. cxp 4716    |` cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724  df-rel 4725  df-res 4730
This theorem is referenced by:  resopab2  5051  opabresid  5057  mptpreima  5221  isarep2  5407  resoprab  6099  df1st2  6363  df2nd2  6364
  Copyright terms: Public domain W3C validator