ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab Unicode version

Theorem resopab 4928
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4616 . 2  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  ( { <. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )
2 df-xp 4610 . . . . . 6  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
3 vex 2729 . . . . . . . 8  |-  y  e. 
_V
43biantru 300 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  A  /\  y  e.  _V ) )
54opabbii 4049 . . . . . 6  |-  { <. x ,  y >.  |  x  e.  A }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
62, 5eqtr4i 2189 . . . . 5  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  x  e.  A }
76ineq2i 3320 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )
8 incom 3314 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )  =  ( { <. x ,  y
>.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )
97, 8eqtri 2186 . . 3  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  x  e.  A }  i^i  {
<. x ,  y >.  |  ph } )
10 inopab 4736 . . 3  |-  ( {
<. x ,  y >.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
119, 10eqtri 2186 . 2  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
121, 11eqtri 2186 1  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115   {copab 4042    X. cxp 4602    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  resopab2  4931  opabresid  4937  mptpreima  5097  isarep2  5275  resoprab  5938  df1st2  6187  df2nd2  6188
  Copyright terms: Public domain W3C validator