ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcodir Unicode version

Theorem brcodir 4991
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
brcodir  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  B R z ) ) )
Distinct variable groups:    z, A    z, B    z, R    z, V    z, W

Proof of Theorem brcodir
StepHypRef Expression
1 brcog 4771 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  z `' R B ) ) )
2 vex 2729 . . . . . 6  |-  z  e. 
_V
3 brcnvg 4785 . . . . . 6  |-  ( ( z  e.  _V  /\  B  e.  W )  ->  ( z `' R B 
<->  B R z ) )
42, 3mpan 421 . . . . 5  |-  ( B  e.  W  ->  (
z `' R B  <-> 
B R z ) )
54anbi2d 460 . . . 4  |-  ( B  e.  W  ->  (
( A R z  /\  z `' R B )  <->  ( A R z  /\  B R z ) ) )
65adantl 275 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A R z  /\  z `' R B )  <->  ( A R z  /\  B R z ) ) )
76exbidv 1813 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. z ( A R z  /\  z `' R B )  <->  E. z
( A R z  /\  B R z ) ) )
81, 7bitrd 187 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  B R z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   _Vcvv 2726   class class class wbr 3982   `'ccnv 4603    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-co 4613
This theorem is referenced by:  codir  4992
  Copyright terms: Public domain W3C validator