ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcodir Unicode version

Theorem brcodir 5053
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
brcodir  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  B R z ) ) )
Distinct variable groups:    z, A    z, B    z, R    z, V    z, W

Proof of Theorem brcodir
StepHypRef Expression
1 brcog 4829 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  z `' R B ) ) )
2 vex 2763 . . . . . 6  |-  z  e. 
_V
3 brcnvg 4843 . . . . . 6  |-  ( ( z  e.  _V  /\  B  e.  W )  ->  ( z `' R B 
<->  B R z ) )
42, 3mpan 424 . . . . 5  |-  ( B  e.  W  ->  (
z `' R B  <-> 
B R z ) )
54anbi2d 464 . . . 4  |-  ( B  e.  W  ->  (
( A R z  /\  z `' R B )  <->  ( A R z  /\  B R z ) ) )
65adantl 277 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A R z  /\  z `' R B )  <->  ( A R z  /\  B R z ) ) )
76exbidv 1836 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. z ( A R z  /\  z `' R B )  <->  E. z
( A R z  /\  B R z ) ) )
81, 7bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  B R z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   `'ccnv 4658    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-co 4668
This theorem is referenced by:  codir  5054
  Copyright terms: Public domain W3C validator