ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcodir Unicode version

Theorem brcodir 5078
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
brcodir  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  B R z ) ) )
Distinct variable groups:    z, A    z, B    z, R    z, V    z, W

Proof of Theorem brcodir
StepHypRef Expression
1 brcog 4852 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  z `' R B ) ) )
2 vex 2776 . . . . . 6  |-  z  e. 
_V
3 brcnvg 4866 . . . . . 6  |-  ( ( z  e.  _V  /\  B  e.  W )  ->  ( z `' R B 
<->  B R z ) )
42, 3mpan 424 . . . . 5  |-  ( B  e.  W  ->  (
z `' R B  <-> 
B R z ) )
54anbi2d 464 . . . 4  |-  ( B  e.  W  ->  (
( A R z  /\  z `' R B )  <->  ( A R z  /\  B R z ) ) )
65adantl 277 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A R z  /\  z `' R B )  <->  ( A R z  /\  B R z ) ) )
76exbidv 1849 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. z ( A R z  /\  z `' R B )  <->  E. z
( A R z  /\  B R z ) ) )
81, 7bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( `' R  o.  R ) B  <->  E. z ( A R z  /\  B R z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1516    e. wcel 2177   _Vcvv 2773   class class class wbr 4050   `'ccnv 4681    o. ccom 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-cnv 4690  df-co 4691
This theorem is referenced by:  codir  5079
  Copyright terms: Public domain W3C validator