ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcodir GIF version

Theorem brcodir 5053
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
brcodir ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝑅   𝑧,𝑉   𝑧,𝑊

Proof of Theorem brcodir
StepHypRef Expression
1 brcog 4829 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝑧𝑅𝐵)))
2 vex 2763 . . . . . 6 𝑧 ∈ V
3 brcnvg 4843 . . . . . 6 ((𝑧 ∈ V ∧ 𝐵𝑊) → (𝑧𝑅𝐵𝐵𝑅𝑧))
42, 3mpan 424 . . . . 5 (𝐵𝑊 → (𝑧𝑅𝐵𝐵𝑅𝑧))
54anbi2d 464 . . . 4 (𝐵𝑊 → ((𝐴𝑅𝑧𝑧𝑅𝐵) ↔ (𝐴𝑅𝑧𝐵𝑅𝑧)))
65adantl 277 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝑧𝑧𝑅𝐵) ↔ (𝐴𝑅𝑧𝐵𝑅𝑧)))
76exbidv 1836 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑧(𝐴𝑅𝑧𝑧𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
81, 7bitrd 188 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1503  wcel 2164  Vcvv 2760   class class class wbr 4029  ccnv 4658  ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-co 4668
This theorem is referenced by:  codir  5054
  Copyright terms: Public domain W3C validator