| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brcodir | GIF version | ||
| Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| brcodir | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcog 4849 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵))) | |
| 2 | vex 2776 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 3 | brcnvg 4863 | . . . . . 6 ⊢ ((𝑧 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) | |
| 4 | 2, 3 | mpan 424 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) |
| 5 | 4 | anbi2d 464 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| 7 | 6 | exbidv 1849 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| 8 | 1, 7 | bitrd 188 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 class class class wbr 4047 ◡ccnv 4678 ∘ ccom 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-cnv 4687 df-co 4688 |
| This theorem is referenced by: codir 5076 |
| Copyright terms: Public domain | W3C validator |