ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcodir GIF version

Theorem brcodir 5092
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
brcodir ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝑅   𝑧,𝑉   𝑧,𝑊

Proof of Theorem brcodir
StepHypRef Expression
1 brcog 4866 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝑧𝑅𝐵)))
2 vex 2782 . . . . . 6 𝑧 ∈ V
3 brcnvg 4880 . . . . . 6 ((𝑧 ∈ V ∧ 𝐵𝑊) → (𝑧𝑅𝐵𝐵𝑅𝑧))
42, 3mpan 424 . . . . 5 (𝐵𝑊 → (𝑧𝑅𝐵𝐵𝑅𝑧))
54anbi2d 464 . . . 4 (𝐵𝑊 → ((𝐴𝑅𝑧𝑧𝑅𝐵) ↔ (𝐴𝑅𝑧𝐵𝑅𝑧)))
65adantl 277 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝑧𝑧𝑅𝐵) ↔ (𝐴𝑅𝑧𝐵𝑅𝑧)))
76exbidv 1851 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑧(𝐴𝑅𝑧𝑧𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
81, 7bitrd 188 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1518  wcel 2180  Vcvv 2779   class class class wbr 4062  ccnv 4695  ccom 4700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-cnv 4704  df-co 4705
This theorem is referenced by:  codir  5093
  Copyright terms: Public domain W3C validator