ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnvg Unicode version

Theorem brcnvg 4903
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )

Proof of Theorem brcnvg
StepHypRef Expression
1 opelcnvg 4902 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
2 df-br 4084 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
3 df-br 4084 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
41, 2, 33bitr4g 223 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   <.cop 3669   class class class wbr 4083   `'ccnv 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727
This theorem is referenced by:  brcnv  4905  brelrng  4955  eliniseg  5098  relbrcnvg  5107  brcodir  5116  sefvex  5648  foeqcnvco  5914  isocnv2  5936  ersym  6692  brdifun  6707  ecidg  6746  cnvti  7186  eqinfti  7187  inflbti  7191  infglbti  7192  negiso  9102  xrnegiso  11773  znleval  14617  pw1nct  16369
  Copyright terms: Public domain W3C validator