Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brcnvg | Unicode version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
Ref | Expression |
---|---|
brcnvg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnvg 4791 | . 2 | |
2 | df-br 3990 | . 2 | |
3 | df-br 3990 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 cop 3586 class class class wbr 3989 ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 |
This theorem is referenced by: brcnv 4794 brelrng 4842 eliniseg 4981 relbrcnvg 4990 brcodir 4998 sefvex 5517 foeqcnvco 5769 isocnv2 5791 ersym 6525 brdifun 6540 ecidg 6577 cnvti 6996 eqinfti 6997 inflbti 7001 infglbti 7002 negiso 8871 xrnegiso 11225 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |