ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnvg Unicode version

Theorem brcnvg 4792
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )

Proof of Theorem brcnvg
StepHypRef Expression
1 opelcnvg 4791 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
2 df-br 3990 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
3 df-br 3990 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
41, 2, 33bitr4g 222 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   <.cop 3586   class class class wbr 3989   `'ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619
This theorem is referenced by:  brcnv  4794  brelrng  4842  eliniseg  4981  relbrcnvg  4990  brcodir  4998  sefvex  5517  foeqcnvco  5769  isocnv2  5791  ersym  6525  brdifun  6540  ecidg  6577  cnvti  6996  eqinfti  6997  inflbti  7001  infglbti  7002  negiso  8871  xrnegiso  11225  pw1nct  14036
  Copyright terms: Public domain W3C validator