ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnvg Unicode version

Theorem brcnvg 4680
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )

Proof of Theorem brcnvg
StepHypRef Expression
1 opelcnvg 4679 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
2 df-br 3896 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
3 df-br 3896 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
41, 2, 33bitr4g 222 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   <.cop 3496   class class class wbr 3895   `'ccnv 4498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-cnv 4507
This theorem is referenced by:  brcnv  4682  brelrng  4730  eliniseg  4867  relbrcnvg  4876  brcodir  4884  sefvex  5396  foeqcnvco  5645  isocnv2  5667  ersym  6395  brdifun  6410  ecidg  6447  cnvti  6858  eqinfti  6859  inflbti  6863  infglbti  6864  negiso  8620  xrnegiso  10920
  Copyright terms: Public domain W3C validator