ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  codir Unicode version

Theorem codir 5058
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, R, y, z

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4693 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2 df-br 4034 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  <. x ,  y >.  e.  ( `' R  o.  R
) )
3 vex 2766 . . . . . 6  |-  x  e. 
_V
4 vex 2766 . . . . . 6  |-  y  e. 
_V
5 brcodir 5057 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( `' R  o.  R ) y  <->  E. z ( x R z  /\  y R z ) ) )
63, 4, 5mp2an 426 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  E. z
( x R z  /\  y R z ) )
72, 6bitr3i 186 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' R  o.  R )  <->  E. z
( x R z  /\  y R z ) )
81, 7imbi12i 239 . . 3  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  E. z ( x R z  /\  y R z ) ) )
982albii 1485 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
10 relxp 4772 . . 3  |-  Rel  ( A  X.  B )
11 ssrel 4751 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( ( A  X.  B )  C_  ( `' R  o.  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( A  X.  B )  ->  <. x ,  y >.  e.  ( `' R  o.  R
) ) ) )
1210, 11ax-mp 5 . 2  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( `' R  o.  R ) ) )
13 r2al 2516 . 2  |-  ( A. x  e.  A  A. y  e.  B  E. z ( x R z  /\  y R z )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
149, 12, 133bitr4i 212 1  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E.wex 1506    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   <.cop 3625   class class class wbr 4033    X. cxp 4661   `'ccnv 4662    o. ccom 4667   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator