ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  codir Unicode version

Theorem codir 4999
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, R, y, z

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4641 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2 df-br 3990 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  <. x ,  y >.  e.  ( `' R  o.  R
) )
3 vex 2733 . . . . . 6  |-  x  e. 
_V
4 vex 2733 . . . . . 6  |-  y  e. 
_V
5 brcodir 4998 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( `' R  o.  R ) y  <->  E. z ( x R z  /\  y R z ) ) )
63, 4, 5mp2an 424 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  E. z
( x R z  /\  y R z ) )
72, 6bitr3i 185 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' R  o.  R )  <->  E. z
( x R z  /\  y R z ) )
81, 7imbi12i 238 . . 3  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  E. z ( x R z  /\  y R z ) ) )
982albii 1464 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
10 relxp 4720 . . 3  |-  Rel  ( A  X.  B )
11 ssrel 4699 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( ( A  X.  B )  C_  ( `' R  o.  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( A  X.  B )  ->  <. x ,  y >.  e.  ( `' R  o.  R
) ) ) )
1210, 11ax-mp 5 . 2  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( `' R  o.  R ) ) )
13 r2al 2489 . 2  |-  ( A. x  e.  A  A. y  e.  B  E. z ( x R z  /\  y R z )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
149, 12, 133bitr4i 211 1  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   <.cop 3586   class class class wbr 3989    X. cxp 4609   `'ccnv 4610    o. ccom 4615   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator