ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdom2g Unicode version

Theorem brdom2g 6894
Description: Dominance relation. This variation of brdomg 6895 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 6895. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdom2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    V( f)    W( f)

Proof of Theorem brdom2g
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq2 5526 . . 3  |-  ( x  =  A  ->  (
f : x -1-1-> y  <-> 
f : A -1-1-> y ) )
21exbidv 1871 . 2  |-  ( x  =  A  ->  ( E. f  f :
x -1-1-> y  <->  E. f 
f : A -1-1-> y ) )
3 f1eq3 5527 . . 3  |-  ( y  =  B  ->  (
f : A -1-1-> y  <-> 
f : A -1-1-> B
) )
43exbidv 1871 . 2  |-  ( y  =  B  ->  ( E. f  f : A -1-1-> y  <->  E. f 
f : A -1-1-> B
) )
5 df-dom 6887 . 2  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
62, 4, 5brabg 4356 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   class class class wbr 4082   -1-1->wf1 5314    ~<_ cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-fn 5320  df-f 5321  df-f1 5322  df-dom 6887
This theorem is referenced by:  f1dom4g  6902
  Copyright terms: Public domain W3C validator