ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dom4g Unicode version

Theorem f1dom4g 6857
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 6862 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1dom4g  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A -1-1-> B )  ->  A  ~<_  B )

Proof of Theorem f1dom4g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1eq1 5488 . . . . 5  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
21spcegv 2865 . . . 4  |-  ( F  e.  V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
32imp 124 . . 3  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  E. f  f : A -1-1-> B )
433ad2antl1 1162 . 2  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A -1-1-> B )  ->  E. f  f : A -1-1-> B )
5 brdom2g 6849 . . . 4  |-  ( ( A  e.  W  /\  B  e.  X )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
653adant1 1018 . . 3  |-  ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
76adantr 276 . 2  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A -1-1-> B )  -> 
( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
84, 7mpbird 167 1  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A -1-1-> B )  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   E.wex 1516    e. wcel 2177   class class class wbr 4051   -1-1->wf1 5277    ~<_ cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-dom 6842
This theorem is referenced by:  domssr  6882
  Copyright terms: Public domain W3C validator