ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabg Unicode version

Theorem brabg 4198
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
brabg.5  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
Distinct variable groups:    x, y, A   
x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    C( x, y)    D( x, y)    R( x, y)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 opelopabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
31, 2sylan9bb 458 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch )
)
4 brabg.5 . 2  |-  R  =  { <. x ,  y
>.  |  ph }
53, 4brabga 4193 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3936   {copab 3995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997
This theorem is referenced by:  brab  4201  opbrop  4625  ideqg  4697  opelcnvg  4726  bren  6648  brdomg  6649  enq0breq  7267  ltresr  7670  ltxrlt  7853  apreap  8372  apreim  8388  shftfibg  10623  shftfib  10626  2shfti  10634
  Copyright terms: Public domain W3C validator