ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabg Unicode version

Theorem brabg 4270
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
brabg.5  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
Distinct variable groups:    x, y, A   
x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    C( x, y)    D( x, y)    R( x, y)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 opelopabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
31, 2sylan9bb 462 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch )
)
4 brabg.5 . 2  |-  R  =  { <. x ,  y
>.  |  ph }
53, 4brabga 4265 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4004   {copab 4064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066
This theorem is referenced by:  brab  4273  opbrop  4706  ideqg  4779  opelcnvg  4808  bren  6747  brdomg  6748  enq0breq  7435  ltresr  7838  ltxrlt  8023  apreap  8544  apreim  8560  shftfibg  10829  shftfib  10832  2shfti  10840
  Copyright terms: Public domain W3C validator