| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brabg | Unicode version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabg.1 |
|
| opelopabg.2 |
|
| brabg.5 |
|
| Ref | Expression |
|---|---|
| brabg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabg.1 |
. . 3
| |
| 2 | opelopabg.2 |
. . 3
| |
| 3 | 1, 2 | sylan9bb 462 |
. 2
|
| 4 | brabg.5 |
. 2
| |
| 5 | 3, 4 | brabga 4352 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 |
| This theorem is referenced by: brab 4361 opbrop 4798 ideqg 4873 opelcnvg 4902 breng 6894 bren 6895 brdom2g 6896 brdomg 6897 enq0breq 7623 ltresr 8026 ltxrlt 8212 apreap 8734 apreim 8750 shftfibg 11331 shftfib 11334 2shfti 11342 |
| Copyright terms: Public domain | W3C validator |