ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poinxp Unicode version

Theorem poinxp 4668
Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
poinxp  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)

Proof of Theorem poinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 519 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  x  e.  A )
2 brinxp 4667 . . . . . . . 8  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x R x  <-> 
x ( R  i^i  ( A  X.  A
) ) x ) )
31, 1, 2syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R x  <->  x ( R  i^i  ( A  X.  A ) ) x ) )
43notbid 657 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  ( -.  x R x  <->  -.  x
( R  i^i  ( A  X.  A ) ) x ) )
5 brinxp 4667 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
65adantr 274 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R y  <->  x ( R  i^i  ( A  X.  A ) ) y ) )
7 brinxp 4667 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y R z  <-> 
y ( R  i^i  ( A  X.  A
) ) z ) )
87adantll 468 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
y R z  <->  y ( R  i^i  ( A  X.  A ) ) z ) )
96, 8anbi12d 465 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( x R y  /\  y R z )  <->  ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z ) ) )
10 brinxp 4667 . . . . . . . 8  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
1110adantlr 469 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R z  <->  x ( R  i^i  ( A  X.  A ) ) z ) )
129, 11imbi12d 233 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( ( x R y  /\  y R z )  ->  x R z )  <->  ( (
x ( R  i^i  ( A  X.  A
) ) y  /\  y ( R  i^i  ( A  X.  A
) ) z )  ->  x ( R  i^i  ( A  X.  A ) ) z ) ) )
134, 12anbi12d 465 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A
) ) y  /\  y ( R  i^i  ( A  X.  A
) ) z )  ->  x ( R  i^i  ( A  X.  A ) ) z ) ) ) )
1413ralbidva 2460 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A
) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) ) )
1514ralbidva 2460 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) ) )
1615ralbiia 2478 . 2  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) )
17 df-po 4269 . 2  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
18 df-po 4269 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A
) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) )
1916, 17, 183bitr4i 211 1  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2135   A.wral 2442    i^i cin 3111   class class class wbr 3977    Po wpo 4267    X. cxp 4597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-br 3978  df-opab 4039  df-po 4269  df-xp 4605
This theorem is referenced by:  soinxp  4669
  Copyright terms: Public domain W3C validator