ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poinxp Unicode version

Theorem poinxp 4728
Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
poinxp  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)

Proof of Theorem poinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  x  e.  A )
2 brinxp 4727 . . . . . . . 8  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x R x  <-> 
x ( R  i^i  ( A  X.  A
) ) x ) )
31, 1, 2syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R x  <->  x ( R  i^i  ( A  X.  A ) ) x ) )
43notbid 668 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  ( -.  x R x  <->  -.  x
( R  i^i  ( A  X.  A ) ) x ) )
5 brinxp 4727 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
65adantr 276 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R y  <->  x ( R  i^i  ( A  X.  A ) ) y ) )
7 brinxp 4727 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( y R z  <-> 
y ( R  i^i  ( A  X.  A
) ) z ) )
87adantll 476 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
y R z  <->  y ( R  i^i  ( A  X.  A ) ) z ) )
96, 8anbi12d 473 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( x R y  /\  y R z )  <->  ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z ) ) )
10 brinxp 4727 . . . . . . . 8  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
1110adantlr 477 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
x R z  <->  x ( R  i^i  ( A  X.  A ) ) z ) )
129, 11imbi12d 234 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( ( x R y  /\  y R z )  ->  x R z )  <->  ( (
x ( R  i^i  ( A  X.  A
) ) y  /\  y ( R  i^i  ( A  X.  A
) ) z )  ->  x ( R  i^i  ( A  X.  A ) ) z ) ) )
134, 12anbi12d 473 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A )  ->  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A
) ) y  /\  y ( R  i^i  ( A  X.  A
) ) z )  ->  x ( R  i^i  ( A  X.  A ) ) z ) ) ) )
1413ralbidva 2490 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A
) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) ) )
1514ralbidva 2490 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) ) )
1615ralbiia 2508 . 2  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A ) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) )
17 df-po 4327 . 2  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
18 df-po 4327 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x ( R  i^i  ( A  X.  A
) ) x  /\  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) z )  ->  x
( R  i^i  ( A  X.  A ) ) z ) ) )
1916, 17, 183bitr4i 212 1  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472    i^i cin 3152   class class class wbr 4029    Po wpo 4325    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-po 4327  df-xp 4665
This theorem is referenced by:  soinxp  4729
  Copyright terms: Public domain W3C validator