| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poinxp | Unicode version | ||
| Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
| Ref | Expression |
|---|---|
| poinxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . 8
| |
| 2 | brinxp 4787 |
. . . . . . . 8
| |
| 3 | 1, 1, 2 | syl2anc 411 |
. . . . . . 7
|
| 4 | 3 | notbid 671 |
. . . . . 6
|
| 5 | brinxp 4787 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 276 |
. . . . . . . 8
|
| 7 | brinxp 4787 |
. . . . . . . . 9
| |
| 8 | 7 | adantll 476 |
. . . . . . . 8
|
| 9 | 6, 8 | anbi12d 473 |
. . . . . . 7
|
| 10 | brinxp 4787 |
. . . . . . . 8
| |
| 11 | 10 | adantlr 477 |
. . . . . . 7
|
| 12 | 9, 11 | imbi12d 234 |
. . . . . 6
|
| 13 | 4, 12 | anbi12d 473 |
. . . . 5
|
| 14 | 13 | ralbidva 2526 |
. . . 4
|
| 15 | 14 | ralbidva 2526 |
. . 3
|
| 16 | 15 | ralbiia 2544 |
. 2
|
| 17 | df-po 4387 |
. 2
| |
| 18 | df-po 4387 |
. 2
| |
| 19 | 16, 17, 18 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-po 4387 df-xp 4725 |
| This theorem is referenced by: soinxp 4789 |
| Copyright terms: Public domain | W3C validator |