ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seinxp Unicode version

Theorem seinxp 4764
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
seinxp  |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A
) ) Se  A )

Proof of Theorem seinxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brinxp 4761 . . . . . 6  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
21ancoms 268 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
32rabbidva 2764 . . . 4  |-  ( x  e.  A  ->  { y  e.  A  |  y R x }  =  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x } )
43eleq1d 2276 . . 3  |-  ( x  e.  A  ->  ( { y  e.  A  |  y R x }  e.  _V  <->  { y  e.  A  |  y
( R  i^i  ( A  X.  A ) ) x }  e.  _V ) )
54ralbiia 2522 . 2  |-  ( A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V  <->  A. x  e.  A  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x }  e.  _V )
6 df-se 4398 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
7 df-se 4398 . 2  |-  ( ( R  i^i  ( A  X.  A ) ) Se  A  <->  A. x  e.  A  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x }  e.  _V )
85, 6, 73bitr4i 212 1  |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A
) ) Se  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    i^i cin 3173   class class class wbr 4059   Se wse 4394    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-se 4398  df-xp 4699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator