ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seinxp Unicode version

Theorem seinxp 4730
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
seinxp  |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A
) ) Se  A )

Proof of Theorem seinxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brinxp 4727 . . . . . 6  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
21ancoms 268 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
32rabbidva 2748 . . . 4  |-  ( x  e.  A  ->  { y  e.  A  |  y R x }  =  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x } )
43eleq1d 2262 . . 3  |-  ( x  e.  A  ->  ( { y  e.  A  |  y R x }  e.  _V  <->  { y  e.  A  |  y
( R  i^i  ( A  X.  A ) ) x }  e.  _V ) )
54ralbiia 2508 . 2  |-  ( A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V  <->  A. x  e.  A  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x }  e.  _V )
6 df-se 4364 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
7 df-se 4364 . 2  |-  ( ( R  i^i  ( A  X.  A ) ) Se  A  <->  A. x  e.  A  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x }  e.  _V )
85, 6, 73bitr4i 212 1  |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A
) ) Se  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760    i^i cin 3152   class class class wbr 4029   Se wse 4360    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-se 4364  df-xp 4665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator