ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seinxp Unicode version

Theorem seinxp 4674
Description: Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
seinxp  |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A
) ) Se  A )

Proof of Theorem seinxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brinxp 4671 . . . . . 6  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
21ancoms 266 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
32rabbidva 2713 . . . 4  |-  ( x  e.  A  ->  { y  e.  A  |  y R x }  =  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x } )
43eleq1d 2234 . . 3  |-  ( x  e.  A  ->  ( { y  e.  A  |  y R x }  e.  _V  <->  { y  e.  A  |  y
( R  i^i  ( A  X.  A ) ) x }  e.  _V ) )
54ralbiia 2479 . 2  |-  ( A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V  <->  A. x  e.  A  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x }  e.  _V )
6 df-se 4310 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
7 df-se 4310 . 2  |-  ( ( R  i^i  ( A  X.  A ) ) Se  A  <->  A. x  e.  A  { y  e.  A  |  y ( R  i^i  ( A  X.  A ) ) x }  e.  _V )
85, 6, 73bitr4i 211 1  |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A
) ) Se  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2136   A.wral 2443   {crab 2447   _Vcvv 2725    i^i cin 3114   class class class wbr 3981   Se wse 4306    X. cxp 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-se 4310  df-xp 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator