ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores2 Unicode version

Theorem isores2 5863
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )

Proof of Theorem isores2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5507 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
2 ffvelcdm 5698 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
32adantrr 479 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )  e.  B )
4 ffvelcdm 5698 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
54adantrl 478 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  y )  e.  B )
6 brinxp 4732 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  B  /\  ( H `  y )  e.  B )  -> 
( ( H `  x ) S ( H `  y )  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) )
73, 5, 6syl2anc 411 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
81, 7sylan 283 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
98anassrs 400 . . . . . 6  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
109bibi2d 232 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1110ralbidva 2493 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  A )  ->  ( A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1211ralbidva 2493 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1312pm5.32i 454 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) ) )
14 df-isom 5268 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
15 df-isom 5268 . 2  |-  ( H 
Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1613, 14, 153bitr4i 212 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   A.wral 2475    i^i cin 3156   class class class wbr 4034    X. cxp 4662   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259    Isom wiso 5260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-f1o 5266  df-fv 5267  df-isom 5268
This theorem is referenced by:  isores1  5864
  Copyright terms: Public domain W3C validator