ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores2 Unicode version

Theorem isores2 5856
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )

Proof of Theorem isores2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5500 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
2 ffvelcdm 5691 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
32adantrr 479 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )  e.  B )
4 ffvelcdm 5691 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
54adantrl 478 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  y )  e.  B )
6 brinxp 4727 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  B  /\  ( H `  y )  e.  B )  -> 
( ( H `  x ) S ( H `  y )  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) )
73, 5, 6syl2anc 411 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
81, 7sylan 283 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
98anassrs 400 . . . . . 6  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
109bibi2d 232 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1110ralbidva 2490 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  A )  ->  ( A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1211ralbidva 2490 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1312pm5.32i 454 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) ) )
14 df-isom 5263 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
15 df-isom 5263 . 2  |-  ( H 
Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1613, 14, 153bitr4i 212 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472    i^i cin 3152   class class class wbr 4029    X. cxp 4657   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254    Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by:  isores1  5857
  Copyright terms: Public domain W3C validator