ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores2 Unicode version

Theorem isores2 5792
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )

Proof of Theorem isores2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5442 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
2 ffvelrn 5629 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
32adantrr 476 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )  e.  B )
4 ffvelrn 5629 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
54adantrl 475 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  y )  e.  B )
6 brinxp 4679 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  B  /\  ( H `  y )  e.  B )  -> 
( ( H `  x ) S ( H `  y )  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) )
73, 5, 6syl2anc 409 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
81, 7sylan 281 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
98anassrs 398 . . . . . 6  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
109bibi2d 231 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1110ralbidva 2466 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  A )  ->  ( A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1211ralbidva 2466 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1312pm5.32i 451 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) ) )
14 df-isom 5207 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
15 df-isom 5207 . 2  |-  ( H 
Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1613, 14, 153bitr4i 211 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   A.wral 2448    i^i cin 3120   class class class wbr 3989    X. cxp 4609   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198    Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-f1o 5205  df-fv 5206  df-isom 5207
This theorem is referenced by:  isores1  5793
  Copyright terms: Public domain W3C validator