ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores2 Unicode version

Theorem isores2 5781
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )

Proof of Theorem isores2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5432 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
2 ffvelrn 5618 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
32adantrr 471 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )  e.  B )
4 ffvelrn 5618 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
54adantrl 470 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  y )  e.  B )
6 brinxp 4672 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  B  /\  ( H `  y )  e.  B )  -> 
( ( H `  x ) S ( H `  y )  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) )
73, 5, 6syl2anc 409 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
81, 7sylan 281 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
98anassrs 398 . . . . . 6  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
109bibi2d 231 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1110ralbidva 2462 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  A )  ->  ( A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1211ralbidva 2462 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1312pm5.32i 450 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) ) )
14 df-isom 5197 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
15 df-isom 5197 . 2  |-  ( H 
Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1613, 14, 153bitr4i 211 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444    i^i cin 3115   class class class wbr 3982    X. cxp 4602   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188    Isom wiso 5189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-fv 5196  df-isom 5197
This theorem is referenced by:  isores1  5782
  Copyright terms: Public domain W3C validator