ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov31 GIF version

Theorem caov31 6194
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caov31 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov31
StepHypRef Expression
1 caov.1 . . . 4 𝐴 ∈ V
2 caov.3 . . . 4 𝐶 ∈ V
3 caov.2 . . . 4 𝐵 ∈ V
4 caov.ass . . . 4 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
51, 2, 3, 4caovass 6165 . . 3 ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵))
6 caov.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
71, 2, 3, 6, 4caov12 6193 . . 3 (𝐴𝐹(𝐶𝐹𝐵)) = (𝐶𝐹(𝐴𝐹𝐵))
85, 7eqtri 2250 . 2 ((𝐴𝐹𝐶)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵))
91, 3, 2, 6, 4caov32 6192 . 2 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
102, 1, 3, 6, 4caov32 6192 . . 3 ((𝐶𝐹𝐴)𝐹𝐵) = ((𝐶𝐹𝐵)𝐹𝐴)
112, 1, 3, 4caovass 6165 . . 3 ((𝐶𝐹𝐴)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵))
1210, 11eqtr3i 2252 . 2 ((𝐶𝐹𝐵)𝐹𝐴) = (𝐶𝐹(𝐴𝐹𝐵))
138, 9, 123eqtr4i 2260 1 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  caov13  6195
  Copyright terms: Public domain W3C validator