| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caov31 | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| caov.1 | ⊢ 𝐴 ∈ V | 
| caov.2 | ⊢ 𝐵 ∈ V | 
| caov.3 | ⊢ 𝐶 ∈ V | 
| caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | 
| caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | 
| Ref | Expression | 
|---|---|
| caov31 | ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 3 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
| 5 | 1, 2, 3, 4 | caovass 6084 | . . 3 ⊢ ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵)) | 
| 6 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 7 | 1, 2, 3, 6, 4 | caov12 6112 | . . 3 ⊢ (𝐴𝐹(𝐶𝐹𝐵)) = (𝐶𝐹(𝐴𝐹𝐵)) | 
| 8 | 5, 7 | eqtri 2217 | . 2 ⊢ ((𝐴𝐹𝐶)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵)) | 
| 9 | 1, 3, 2, 6, 4 | caov32 6111 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) | 
| 10 | 2, 1, 3, 6, 4 | caov32 6111 | . . 3 ⊢ ((𝐶𝐹𝐴)𝐹𝐵) = ((𝐶𝐹𝐵)𝐹𝐴) | 
| 11 | 2, 1, 3, 4 | caovass 6084 | . . 3 ⊢ ((𝐶𝐹𝐴)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵)) | 
| 12 | 10, 11 | eqtr3i 2219 | . 2 ⊢ ((𝐶𝐹𝐵)𝐹𝐴) = (𝐶𝐹(𝐴𝐹𝐵)) | 
| 13 | 8, 9, 12 | 3eqtr4i 2227 | 1 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: caov13 6114 | 
| Copyright terms: Public domain | W3C validator |