Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caov31 | GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caov31 | ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
5 | 1, 2, 3, 4 | caovass 5982 | . . 3 ⊢ ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵)) |
6 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
7 | 1, 2, 3, 6, 4 | caov12 6010 | . . 3 ⊢ (𝐴𝐹(𝐶𝐹𝐵)) = (𝐶𝐹(𝐴𝐹𝐵)) |
8 | 5, 7 | eqtri 2178 | . 2 ⊢ ((𝐴𝐹𝐶)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵)) |
9 | 1, 3, 2, 6, 4 | caov32 6009 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) |
10 | 2, 1, 3, 6, 4 | caov32 6009 | . . 3 ⊢ ((𝐶𝐹𝐴)𝐹𝐵) = ((𝐶𝐹𝐵)𝐹𝐴) |
11 | 2, 1, 3, 4 | caovass 5982 | . . 3 ⊢ ((𝐶𝐹𝐴)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵)) |
12 | 10, 11 | eqtr3i 2180 | . 2 ⊢ ((𝐶𝐹𝐵)𝐹𝐴) = (𝐶𝐹(𝐴𝐹𝐵)) |
13 | 8, 9, 12 | 3eqtr4i 2188 | 1 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 Vcvv 2712 (class class class)co 5825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-br 3967 df-iota 5136 df-fv 5179 df-ov 5828 |
This theorem is referenced by: caov13 6012 |
Copyright terms: Public domain | W3C validator |