ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov32 Unicode version

Theorem caov32 6052
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov32  |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov32
StepHypRef Expression
1 caov.2 . . . 4  |-  B  e. 
_V
2 caov.3 . . . 4  |-  C  e. 
_V
3 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
41, 2, 3caovcom 6022 . . 3  |-  ( B F C )  =  ( C F B )
54oveq2i 5876 . 2  |-  ( A F ( B F C ) )  =  ( A F ( C F B ) )
6 caov.1 . . 3  |-  A  e. 
_V
7 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
86, 1, 2, 7caovass 6025 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
96, 2, 1, 7caovass 6025 . 2  |-  ( ( A F C ) F B )  =  ( A F ( C F B ) )
105, 8, 93eqtr4i 2206 1  |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146   _Vcvv 2735  (class class class)co 5865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868
This theorem is referenced by:  caov31  6054
  Copyright terms: Public domain W3C validator