ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov32 Unicode version

Theorem caov32 6029
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov32  |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov32
StepHypRef Expression
1 caov.2 . . . 4  |-  B  e. 
_V
2 caov.3 . . . 4  |-  C  e. 
_V
3 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
41, 2, 3caovcom 5999 . . 3  |-  ( B F C )  =  ( C F B )
54oveq2i 5853 . 2  |-  ( A F ( B F C ) )  =  ( A F ( C F B ) )
6 caov.1 . . 3  |-  A  e. 
_V
7 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
86, 1, 2, 7caovass 6002 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
96, 2, 1, 7caovass 6002 . 2  |-  ( ( A F C ) F B )  =  ( A F ( C F B ) )
105, 8, 93eqtr4i 2196 1  |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caov31  6031
  Copyright terms: Public domain W3C validator