ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov42d Unicode version

Theorem caov42d 6051
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
caovd.4  |-  ( ph  ->  D  e.  S )
caovd.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
Assertion
Ref Expression
caov42d  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( D F B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov42d
StepHypRef Expression
1 caovd.1 . . 3  |-  ( ph  ->  A  e.  S )
2 caovd.2 . . 3  |-  ( ph  ->  B  e.  S )
3 caovd.3 . . 3  |-  ( ph  ->  C  e.  S )
4 caovd.com . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
5 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
6 caovd.4 . . 3  |-  ( ph  ->  D  e.  S )
7 caovd.cl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
81, 2, 3, 4, 5, 6, 7caov4d 6049 . 2  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( B F D ) ) )
94, 2, 6caovcomd 6021 . . 3  |-  ( ph  ->  ( B F D )  =  ( D F B ) )
109oveq2d 5881 . 2  |-  ( ph  ->  ( ( A F C ) F ( B F D ) )  =  ( ( A F C ) F ( D F B ) ) )
118, 10eqtrd 2208 1  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( D F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146  (class class class)co 5865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868
This theorem is referenced by:  caovlem2d  6057  mulcmpblnrlemg  7714  ltasrg  7744  axmulass  7847
  Copyright terms: Public domain W3C validator