| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovord3 | GIF version | ||
| Description: Ordering law. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| caovord.1 | ⊢ 𝐴 ∈ V |
| caovord.2 | ⊢ 𝐵 ∈ V |
| caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| caovord2.3 | ⊢ 𝐶 ∈ V |
| caovord2.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| caovord3.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| caovord3 | ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | caovord2.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 3 | caovord.3 | . . . . 5 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 4 | caovord.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | caovord2.com | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 6 | 1, 2, 3, 4, 5 | caovord2 6119 | . . . 4 ⊢ (𝐵 ∈ 𝑆 → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) |
| 7 | 6 | adantr 276 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) |
| 8 | breq1 4047 | . . 3 ⊢ ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → ((𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵) ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | |
| 9 | 7, 8 | sylan9bb 462 | . 2 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 10 | caovord3.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 11 | 10, 4, 3 | caovord 6118 | . . 3 ⊢ (𝐶 ∈ 𝑆 → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 12 | 11 | ad2antlr 489 | . 2 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 13 | 9, 12 | bitr4d 191 | 1 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 class class class wbr 4044 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |