| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caovord3 | GIF version | ||
| Description: Ordering law. (Contributed by NM, 29-Feb-1996.) | 
| Ref | Expression | 
|---|---|
| caovord.1 | ⊢ 𝐴 ∈ V | 
| caovord.2 | ⊢ 𝐵 ∈ V | 
| caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | 
| caovord2.3 | ⊢ 𝐶 ∈ V | 
| caovord2.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | 
| caovord3.4 | ⊢ 𝐷 ∈ V | 
| Ref | Expression | 
|---|---|
| caovord3 | ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovord.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | caovord2.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 3 | caovord.3 | . . . . 5 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 4 | caovord.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | caovord2.com | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 6 | 1, 2, 3, 4, 5 | caovord2 6096 | . . . 4 ⊢ (𝐵 ∈ 𝑆 → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) | 
| 7 | 6 | adantr 276 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) | 
| 8 | breq1 4036 | . . 3 ⊢ ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → ((𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵) ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | |
| 9 | 7, 8 | sylan9bb 462 | . 2 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | 
| 10 | caovord3.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 11 | 10, 4, 3 | caovord 6095 | . . 3 ⊢ (𝐶 ∈ 𝑆 → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | 
| 12 | 11 | ad2antlr 489 | . 2 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | 
| 13 | 9, 12 | bitr4d 191 | 1 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |