ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordd Unicode version

Theorem caovordd 6046
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
caovordd.2  |-  ( ph  ->  A  e.  S )
caovordd.3  |-  ( ph  ->  B  e.  S )
caovordd.4  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
caovordd  |-  ( ph  ->  ( A R B  <-> 
( C F A ) R ( C F B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovordd
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovordd.2 . 2  |-  ( ph  ->  A  e.  S )
3 caovordd.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovordd.4 . 2  |-  ( ph  ->  C  e.  S )
5 caovordg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
65caovordg 6045 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A R B  <-> 
( C F A ) R ( C F B ) ) )
71, 2, 3, 4, 6syl13anc 1240 1  |-  ( ph  ->  ( A R B  <-> 
( C F A ) R ( C F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4005  (class class class)co 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881
This theorem is referenced by:  caovord2d  6047  caovord3d  6048  genplt2i  7512
  Copyright terms: Public domain W3C validator