ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2d Unicode version

Theorem caovord2d 6022
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
caovordd.2  |-  ( ph  ->  A  e.  S )
caovordd.3  |-  ( ph  ->  B  e.  S )
caovordd.4  |-  ( ph  ->  C  e.  S )
caovord2d.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
Assertion
Ref Expression
caovord2d  |-  ( ph  ->  ( A R B  <-> 
( A F C ) R ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovord2d
StepHypRef Expression
1 caovordg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
2 caovordd.2 . . 3  |-  ( ph  ->  A  e.  S )
3 caovordd.3 . . 3  |-  ( ph  ->  B  e.  S )
4 caovordd.4 . . 3  |-  ( ph  ->  C  e.  S )
51, 2, 3, 4caovordd 6021 . 2  |-  ( ph  ->  ( A R B  <-> 
( C F A ) R ( C F B ) ) )
6 caovord2d.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
76, 4, 2caovcomd 6009 . . 3  |-  ( ph  ->  ( C F A )  =  ( A F C ) )
86, 4, 3caovcomd 6009 . . 3  |-  ( ph  ->  ( C F B )  =  ( B F C ) )
97, 8breq12d 4002 . 2  |-  ( ph  ->  ( ( C F A ) R ( C F B )  <-> 
( A F C ) R ( B F C ) ) )
105, 9bitrd 187 1  |-  ( ph  ->  ( A R B  <-> 
( A F C ) R ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caovord3d  6023  genplt2i  7472  addnqprllem  7489  addnqprulem  7490  mulnqprl  7530  mulnqpru  7531  distrlem4prl  7546  distrlem4pru  7547  1idprl  7552  1idpru  7553  ltexprlemdisj  7568  ltexprlemloc  7569  ltexprlemfl  7571  ltexprlemfu  7573  prplnqu  7582  recexprlem1ssl  7595  recexprlem1ssu  7596  aptiprleml  7601  aptiprlemu  7602  caucvgprlemcanl  7606  cauappcvgprlemlol  7609  cauappcvgprlemloc  7614  cauappcvgprlemladdfu  7616  cauappcvgprlemladdru  7618  cauappcvgprlemladdrl  7619  cauappcvgprlem1  7621  caucvgprlemnkj  7628  caucvgprlemnbj  7629  caucvgprlemlol  7632  caucvgprlemloc  7637  caucvgprlemladdfu  7639  caucvgprlemladdrl  7640  caucvgprprlemnkltj  7651  caucvgprprlemnbj  7655  caucvgprprlemmu  7657  caucvgprprlemlol  7660  caucvgprprlemloc  7665  caucvgprprlemexbt  7668  caucvgprprlemexb  7669  caucvgprprlemaddq  7670  lttrsr  7724  ltsosr  7726  prsrlt  7749  caucvgsrlemoffcau  7760  caucvgsrlemoffgt1  7761  caucvgsrlemoffres  7762  caucvgsr  7764
  Copyright terms: Public domain W3C validator