ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2d Unicode version

Theorem caovord2d 6118
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
caovordd.2  |-  ( ph  ->  A  e.  S )
caovordd.3  |-  ( ph  ->  B  e.  S )
caovordd.4  |-  ( ph  ->  C  e.  S )
caovord2d.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
Assertion
Ref Expression
caovord2d  |-  ( ph  ->  ( A R B  <-> 
( A F C ) R ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovord2d
StepHypRef Expression
1 caovordg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
2 caovordd.2 . . 3  |-  ( ph  ->  A  e.  S )
3 caovordd.3 . . 3  |-  ( ph  ->  B  e.  S )
4 caovordd.4 . . 3  |-  ( ph  ->  C  e.  S )
51, 2, 3, 4caovordd 6117 . 2  |-  ( ph  ->  ( A R B  <-> 
( C F A ) R ( C F B ) ) )
6 caovord2d.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
76, 4, 2caovcomd 6105 . . 3  |-  ( ph  ->  ( C F A )  =  ( A F C ) )
86, 4, 3caovcomd 6105 . . 3  |-  ( ph  ->  ( C F B )  =  ( B F C ) )
97, 8breq12d 4058 . 2  |-  ( ph  ->  ( ( C F A ) R ( C F B )  <-> 
( A F C ) R ( B F C ) ) )
105, 9bitrd 188 1  |-  ( ph  ->  ( A R B  <-> 
( A F C ) R ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4045  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by:  caovord3d  6119  genplt2i  7625  addnqprllem  7642  addnqprulem  7643  mulnqprl  7683  mulnqpru  7684  distrlem4prl  7699  distrlem4pru  7700  1idprl  7705  1idpru  7706  ltexprlemdisj  7721  ltexprlemloc  7722  ltexprlemfl  7724  ltexprlemfu  7726  prplnqu  7735  recexprlem1ssl  7748  recexprlem1ssu  7749  aptiprleml  7754  aptiprlemu  7755  caucvgprlemcanl  7759  cauappcvgprlemlol  7762  cauappcvgprlemloc  7767  cauappcvgprlemladdfu  7769  cauappcvgprlemladdru  7771  cauappcvgprlemladdrl  7772  cauappcvgprlem1  7774  caucvgprlemnkj  7781  caucvgprlemnbj  7782  caucvgprlemlol  7785  caucvgprlemloc  7790  caucvgprlemladdfu  7792  caucvgprlemladdrl  7793  caucvgprprlemnkltj  7804  caucvgprprlemnbj  7808  caucvgprprlemmu  7810  caucvgprprlemlol  7813  caucvgprprlemloc  7818  caucvgprprlemexbt  7821  caucvgprprlemexb  7822  caucvgprprlemaddq  7823  lttrsr  7877  ltsosr  7879  prsrlt  7902  caucvgsrlemoffcau  7913  caucvgsrlemoffgt1  7914  caucvgsrlemoffres  7915  caucvgsr  7917
  Copyright terms: Public domain W3C validator