ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2d Unicode version

Theorem caovord2d 6097
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
caovordd.2  |-  ( ph  ->  A  e.  S )
caovordd.3  |-  ( ph  ->  B  e.  S )
caovordd.4  |-  ( ph  ->  C  e.  S )
caovord2d.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
Assertion
Ref Expression
caovord2d  |-  ( ph  ->  ( A R B  <-> 
( A F C ) R ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovord2d
StepHypRef Expression
1 caovordg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
2 caovordd.2 . . 3  |-  ( ph  ->  A  e.  S )
3 caovordd.3 . . 3  |-  ( ph  ->  B  e.  S )
4 caovordd.4 . . 3  |-  ( ph  ->  C  e.  S )
51, 2, 3, 4caovordd 6096 . 2  |-  ( ph  ->  ( A R B  <-> 
( C F A ) R ( C F B ) ) )
6 caovord2d.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
76, 4, 2caovcomd 6084 . . 3  |-  ( ph  ->  ( C F A )  =  ( A F C ) )
86, 4, 3caovcomd 6084 . . 3  |-  ( ph  ->  ( C F B )  =  ( B F C ) )
97, 8breq12d 4047 . 2  |-  ( ph  ->  ( ( C F A ) R ( C F B )  <-> 
( A F C ) R ( B F C ) ) )
105, 9bitrd 188 1  |-  ( ph  ->  ( A R B  <-> 
( A F C ) R ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  caovord3d  6098  genplt2i  7594  addnqprllem  7611  addnqprulem  7612  mulnqprl  7652  mulnqpru  7653  distrlem4prl  7668  distrlem4pru  7669  1idprl  7674  1idpru  7675  ltexprlemdisj  7690  ltexprlemloc  7691  ltexprlemfl  7693  ltexprlemfu  7695  prplnqu  7704  recexprlem1ssl  7717  recexprlem1ssu  7718  aptiprleml  7723  aptiprlemu  7724  caucvgprlemcanl  7728  cauappcvgprlemlol  7731  cauappcvgprlemloc  7736  cauappcvgprlemladdfu  7738  cauappcvgprlemladdru  7740  cauappcvgprlemladdrl  7741  cauappcvgprlem1  7743  caucvgprlemnkj  7750  caucvgprlemnbj  7751  caucvgprlemlol  7754  caucvgprlemloc  7759  caucvgprlemladdfu  7761  caucvgprlemladdrl  7762  caucvgprprlemnkltj  7773  caucvgprprlemnbj  7777  caucvgprprlemmu  7779  caucvgprprlemlol  7782  caucvgprprlemloc  7787  caucvgprprlemexbt  7790  caucvgprprlemexb  7791  caucvgprprlemaddq  7792  lttrsr  7846  ltsosr  7848  prsrlt  7871  caucvgsrlemoffcau  7882  caucvgsrlemoffgt1  7883  caucvgsrlemoffres  7884  caucvgsr  7886
  Copyright terms: Public domain W3C validator