ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i Unicode version

Theorem genplt2i 7451
Description: Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genplt2i.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genplt2i  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z    x, G, y, z

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  <Q  B )
2 genplt2i.ord . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
32adantl 275 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)  ->  ( x  <Q  y  <->  ( z G x )  <Q  (
z G y ) ) )
4 ltrelnq 7306 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4656 . . . . 5  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
64brel 4656 . . . . 5  |-  ( C 
<Q  D  ->  ( C  e.  Q.  /\  D  e.  Q. ) )
7 simpll 519 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  A  e.  Q. )
85, 6, 7syl2an 287 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  e.  Q. )
9 simplr 520 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  B  e.  Q. )
105, 6, 9syl2an 287 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  B  e.  Q. )
11 simprl 521 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  C  e.  Q. )
125, 6, 11syl2an 287 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  e.  Q. )
13 genplt2i.com . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
1413adantl 275 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x G y )  =  ( y G x ) )
153, 8, 10, 12, 14caovord2d 6011 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A  <Q  B  <->  ( A G C )  <Q  ( B G C ) ) )
161, 15mpbid 146 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G C ) )
17 simpr 109 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  <Q  D )
18 simprr 522 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  D  e.  Q. )
195, 6, 18syl2an 287 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  D  e.  Q. )
203, 12, 19, 10caovordd 6010 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( C  <Q  D  <->  ( B G C )  <Q  ( B G D ) ) )
2117, 20mpbid 146 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( B G C )  <Q  ( B G D ) )
22 ltsonq 7339 . . 3  |-  <Q  Or  Q.
2322, 4sotri 4999 . 2  |-  ( ( ( A G C )  <Q  ( B G C )  /\  ( B G C )  <Q 
( B G D ) )  ->  ( A G C )  <Q 
( B G D ) )
2416, 21, 23syl2anc 409 1  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   Q.cnq 7221    <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-enq 7288  df-nqqs 7289  df-ltnqqs 7294
This theorem is referenced by:  genprndl  7462  genprndu  7463  genpdisj  7464
  Copyright terms: Public domain W3C validator