ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i Unicode version

Theorem genplt2i 7653
Description: Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genplt2i.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genplt2i  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z    x, G, y, z

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  <Q  B )
2 genplt2i.ord . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
32adantl 277 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)  ->  ( x  <Q  y  <->  ( z G x )  <Q  (
z G y ) ) )
4 ltrelnq 7508 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4740 . . . . 5  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
64brel 4740 . . . . 5  |-  ( C 
<Q  D  ->  ( C  e.  Q.  /\  D  e.  Q. ) )
7 simpll 527 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  A  e.  Q. )
85, 6, 7syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  e.  Q. )
9 simplr 528 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  B  e.  Q. )
105, 6, 9syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  B  e.  Q. )
11 simprl 529 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  C  e.  Q. )
125, 6, 11syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  e.  Q. )
13 genplt2i.com . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
1413adantl 277 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x G y )  =  ( y G x ) )
153, 8, 10, 12, 14caovord2d 6134 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A  <Q  B  <->  ( A G C )  <Q  ( B G C ) ) )
161, 15mpbid 147 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G C ) )
17 simpr 110 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  <Q  D )
18 simprr 531 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  D  e.  Q. )
195, 6, 18syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  D  e.  Q. )
203, 12, 19, 10caovordd 6133 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( C  <Q  D  <->  ( B G C )  <Q  ( B G D ) ) )
2117, 20mpbid 147 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( B G C )  <Q  ( B G D ) )
22 ltsonq 7541 . . 3  |-  <Q  Or  Q.
2322, 4sotri 5092 . 2  |-  ( ( ( A G C )  <Q  ( B G C )  /\  ( B G C )  <Q 
( B G D ) )  ->  ( A G C )  <Q 
( B G D ) )
2416, 21, 23syl2anc 411 1  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4054  (class class class)co 5962   Q.cnq 7423    <Q cltq 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-mi 7449  df-lti 7450  df-enq 7490  df-nqqs 7491  df-ltnqqs 7496
This theorem is referenced by:  genprndl  7664  genprndu  7665  genpdisj  7666
  Copyright terms: Public domain W3C validator