ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i Unicode version

Theorem genplt2i 7511
Description: Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genplt2i.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genplt2i  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z    x, G, y, z

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  <Q  B )
2 genplt2i.ord . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
32adantl 277 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)  ->  ( x  <Q  y  <->  ( z G x )  <Q  (
z G y ) ) )
4 ltrelnq 7366 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4680 . . . . 5  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
64brel 4680 . . . . 5  |-  ( C 
<Q  D  ->  ( C  e.  Q.  /\  D  e.  Q. ) )
7 simpll 527 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  A  e.  Q. )
85, 6, 7syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  e.  Q. )
9 simplr 528 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  B  e.  Q. )
105, 6, 9syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  B  e.  Q. )
11 simprl 529 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  C  e.  Q. )
125, 6, 11syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  e.  Q. )
13 genplt2i.com . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
1413adantl 277 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x G y )  =  ( y G x ) )
153, 8, 10, 12, 14caovord2d 6046 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A  <Q  B  <->  ( A G C )  <Q  ( B G C ) ) )
161, 15mpbid 147 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G C ) )
17 simpr 110 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  <Q  D )
18 simprr 531 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  D  e.  Q. )
195, 6, 18syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  D  e.  Q. )
203, 12, 19, 10caovordd 6045 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( C  <Q  D  <->  ( B G C )  <Q  ( B G D ) ) )
2117, 20mpbid 147 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( B G C )  <Q  ( B G D ) )
22 ltsonq 7399 . . 3  |-  <Q  Or  Q.
2322, 4sotri 5026 . 2  |-  ( ( ( A G C )  <Q  ( B G C )  /\  ( B G C )  <Q 
( B G D ) )  ->  ( A G C )  <Q 
( B G D ) )
2416, 21, 23syl2anc 411 1  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   Q.cnq 7281    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-lti 7308  df-enq 7348  df-nqqs 7349  df-ltnqqs 7354
This theorem is referenced by:  genprndl  7522  genprndu  7523  genpdisj  7524
  Copyright terms: Public domain W3C validator