ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genplt2i Unicode version

Theorem genplt2i 7693
Description: Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
Hypotheses
Ref Expression
genplt2i.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genplt2i.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genplt2i  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z    x, G, y, z

Proof of Theorem genplt2i
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  <Q  B )
2 genplt2i.ord . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
32adantl 277 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)  ->  ( x  <Q  y  <->  ( z G x )  <Q  (
z G y ) ) )
4 ltrelnq 7548 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
54brel 4770 . . . . 5  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
64brel 4770 . . . . 5  |-  ( C 
<Q  D  ->  ( C  e.  Q.  /\  D  e.  Q. ) )
7 simpll 527 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  A  e.  Q. )
85, 6, 7syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  A  e.  Q. )
9 simplr 528 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  B  e.  Q. )
105, 6, 9syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  B  e.  Q. )
11 simprl 529 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  C  e.  Q. )
125, 6, 11syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  e.  Q. )
13 genplt2i.com . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
1413adantl 277 . . . 4  |-  ( ( ( A  <Q  B  /\  C  <Q  D )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x G y )  =  ( y G x ) )
153, 8, 10, 12, 14caovord2d 6174 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A  <Q  B  <->  ( A G C )  <Q  ( B G C ) ) )
161, 15mpbid 147 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G C ) )
17 simpr 110 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  C  <Q  D )
18 simprr 531 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  D  e.  Q. )
195, 6, 18syl2an 289 . . . 4  |-  ( ( A  <Q  B  /\  C  <Q  D )  ->  D  e.  Q. )
203, 12, 19, 10caovordd 6173 . . 3  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( C  <Q  D  <->  ( B G C )  <Q  ( B G D ) ) )
2117, 20mpbid 147 . 2  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( B G C )  <Q  ( B G D ) )
22 ltsonq 7581 . . 3  |-  <Q  Or  Q.
2322, 4sotri 5123 . 2  |-  ( ( ( A G C )  <Q  ( B G C )  /\  ( B G C )  <Q 
( B G D ) )  ->  ( A G C )  <Q 
( B G D ) )
2416, 21, 23syl2anc 411 1  |-  ( ( A  <Q  B  /\  C  <Q  D )  -> 
( A G C )  <Q  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   Q.cnq 7463    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-lti 7490  df-enq 7530  df-nqqs 7531  df-ltnqqs 7536
This theorem is referenced by:  genprndl  7704  genprndu  7705  genpdisj  7706
  Copyright terms: Public domain W3C validator