ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord3d Unicode version

Theorem caovord3d 6012
Description: Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
caovordd.2  |-  ( ph  ->  A  e.  S )
caovordd.3  |-  ( ph  ->  B  e.  S )
caovordd.4  |-  ( ph  ->  C  e.  S )
caovord2d.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovord3d.5  |-  ( ph  ->  D  e.  S )
Assertion
Ref Expression
caovord3d  |-  ( ph  ->  ( ( A F B )  =  ( C F D )  ->  ( A R C  <->  D R B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovord3d
StepHypRef Expression
1 breq1 3985 . 2  |-  ( ( A F B )  =  ( C F D )  ->  (
( A F B ) R ( C F B )  <->  ( C F D ) R ( C F B ) ) )
2 caovordg.1 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
3 caovordd.2 . . . 4  |-  ( ph  ->  A  e.  S )
4 caovordd.4 . . . 4  |-  ( ph  ->  C  e.  S )
5 caovordd.3 . . . 4  |-  ( ph  ->  B  e.  S )
6 caovord2d.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
72, 3, 4, 5, 6caovord2d 6011 . . 3  |-  ( ph  ->  ( A R C  <-> 
( A F B ) R ( C F B ) ) )
8 caovord3d.5 . . . 4  |-  ( ph  ->  D  e.  S )
92, 8, 5, 4caovordd 6010 . . 3  |-  ( ph  ->  ( D R B  <-> 
( C F D ) R ( C F B ) ) )
107, 9bibi12d 234 . 2  |-  ( ph  ->  ( ( A R C  <->  D R B )  <-> 
( ( A F B ) R ( C F B )  <-> 
( C F D ) R ( C F B ) ) ) )
111, 10syl5ibr 155 1  |-  ( ph  ->  ( ( A F B )  =  ( C F D )  ->  ( A R C  <->  D R B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  ordpipqqs  7315  ltsrprg  7688
  Copyright terms: Public domain W3C validator