![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmpo | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
Ref | Expression |
---|---|
cbvmpo.1 |
![]() ![]() ![]() ![]() |
cbvmpo.2 |
![]() ![]() ![]() ![]() |
cbvmpo.3 |
![]() ![]() ![]() ![]() |
cbvmpo.4 |
![]() ![]() ![]() ![]() |
cbvmpo.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmpo |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2332 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2332 |
. 2
![]() ![]() ![]() ![]() | |
3 | cbvmpo.1 |
. 2
![]() ![]() ![]() ![]() | |
4 | cbvmpo.2 |
. 2
![]() ![]() ![]() ![]() | |
5 | cbvmpo.3 |
. 2
![]() ![]() ![]() ![]() | |
6 | cbvmpo.4 |
. 2
![]() ![]() ![]() ![]() | |
7 | eqidd 2190 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | cbvmpo.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 5974 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-opab 4080 df-oprab 5900 df-mpo 5901 |
This theorem is referenced by: cbvmpov 5976 fnmpoovd 6240 fmpoco 6241 xpf1o 6872 cnmpt2t 14250 |
Copyright terms: Public domain | W3C validator |