ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpo Unicode version

Theorem cbvmpo 6083
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpo.1  |-  F/_ z C
cbvmpo.2  |-  F/_ w C
cbvmpo.3  |-  F/_ x D
cbvmpo.4  |-  F/_ y D
cbvmpo.5  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
Assertion
Ref Expression
cbvmpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z
Allowed substitution hints:    C( x, y, z, w)    D( x, y, z, w)

Proof of Theorem cbvmpo
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ z B
2 nfcv 2372 . 2  |-  F/_ x B
3 cbvmpo.1 . 2  |-  F/_ z C
4 cbvmpo.2 . 2  |-  F/_ w C
5 cbvmpo.3 . 2  |-  F/_ x D
6 cbvmpo.4 . 2  |-  F/_ y D
7 eqidd 2230 . 2  |-  ( x  =  z  ->  B  =  B )
8 cbvmpo.5 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
91, 2, 3, 4, 5, 6, 7, 8cbvmpox 6082 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   F/_wnfc 2359    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-oprab 6005  df-mpo 6006
This theorem is referenced by:  cbvmpov  6084  fvmpopr2d  6141  fnmpoovd  6361  fmpoco  6362  xpf1o  7005  cnmpt2t  14967
  Copyright terms: Public domain W3C validator