ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpo Unicode version

Theorem cbvmpo 5997
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpo.1  |-  F/_ z C
cbvmpo.2  |-  F/_ w C
cbvmpo.3  |-  F/_ x D
cbvmpo.4  |-  F/_ y D
cbvmpo.5  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
Assertion
Ref Expression
cbvmpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z
Allowed substitution hints:    C( x, y, z, w)    D( x, y, z, w)

Proof of Theorem cbvmpo
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ z B
2 nfcv 2336 . 2  |-  F/_ x B
3 cbvmpo.1 . 2  |-  F/_ z C
4 cbvmpo.2 . 2  |-  F/_ w C
5 cbvmpo.3 . 2  |-  F/_ x D
6 cbvmpo.4 . 2  |-  F/_ y D
7 eqidd 2194 . 2  |-  ( x  =  z  ->  B  =  B )
8 cbvmpo.5 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
91, 2, 3, 4, 5, 6, 7, 8cbvmpox 5996 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/_wnfc 2323    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  cbvmpov  5998  fnmpoovd  6268  fmpoco  6269  xpf1o  6900  cnmpt2t  14461
  Copyright terms: Public domain W3C validator