ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpo Unicode version

Theorem cbvmpo 5956
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpo.1  |-  F/_ z C
cbvmpo.2  |-  F/_ w C
cbvmpo.3  |-  F/_ x D
cbvmpo.4  |-  F/_ y D
cbvmpo.5  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
Assertion
Ref Expression
cbvmpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z
Allowed substitution hints:    C( x, y, z, w)    D( x, y, z, w)

Proof of Theorem cbvmpo
StepHypRef Expression
1 nfcv 2319 . 2  |-  F/_ z B
2 nfcv 2319 . 2  |-  F/_ x B
3 cbvmpo.1 . 2  |-  F/_ z C
4 cbvmpo.2 . 2  |-  F/_ w C
5 cbvmpo.3 . 2  |-  F/_ x D
6 cbvmpo.4 . 2  |-  F/_ y D
7 eqidd 2178 . 2  |-  ( x  =  z  ->  B  =  B )
8 cbvmpo.5 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
91, 2, 3, 4, 5, 6, 7, 8cbvmpox 5955 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   F/_wnfc 2306    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-oprab 5881  df-mpo 5882
This theorem is referenced by:  cbvmpov  5957  fnmpoovd  6218  fmpoco  6219  xpf1o  6846  cnmpt2t  13878
  Copyright terms: Public domain W3C validator