![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmpox | Unicode version |
Description: Rule to change the bound
variable in a maps-to function, using implicit
substitution. This version of cbvmpo 5971 allows ![]() ![]() |
Ref | Expression |
---|---|
cbvmpox.1 |
![]() ![]() ![]() ![]() |
cbvmpox.2 |
![]() ![]() ![]() ![]() |
cbvmpox.3 |
![]() ![]() ![]() ![]() |
cbvmpox.4 |
![]() ![]() ![]() ![]() |
cbvmpox.5 |
![]() ![]() ![]() ![]() |
cbvmpox.6 |
![]() ![]() ![]() ![]() |
cbvmpox.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cbvmpox.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmpox |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cbvmpox.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2326 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfan 1576 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cbvmpox.3 |
. . . . 5
![]() ![]() ![]() ![]() | |
6 | 5 | nfeq2 2344 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | nfan 1576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | nfcv 2332 |
. . . . . 6
![]() ![]() ![]() ![]() | |
10 | 9 | nfcri 2326 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | nfan 1576 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cbvmpox.4 |
. . . . 5
![]() ![]() ![]() ![]() | |
13 | 12 | nfeq2 2344 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | nfan 1576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | cbvmpox.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
17 | 16 | nfcri 2326 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | nfan 1576 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | cbvmpox.5 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 19 | nfeq2 2344 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 18, 20 | nfan 1576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | nfv 1539 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | cbvmpox.6 |
. . . . 5
![]() ![]() ![]() ![]() | |
24 | 23 | nfeq2 2344 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | nfan 1576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | eleq1 2252 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26 | adantr 276 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | cbvmpox.7 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 28 | eleq2d 2259 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | eleq1 2252 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 29, 30 | sylan9bb 462 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 27, 31 | anbi12d 473 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | cbvmpox.8 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 33 | eqeq2d 2201 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 32, 34 | anbi12d 473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 7, 14, 21, 25, 35 | cbvoprab12 5966 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | df-mpo 5897 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | df-mpo 5897 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 36, 37, 38 | 3eqtr4i 2220 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-opab 4080 df-oprab 5896 df-mpo 5897 |
This theorem is referenced by: cbvmpo 5971 mpomptsx 6217 dmmpossx 6219 |
Copyright terms: Public domain | W3C validator |