| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpox | Unicode version | ||
| Description: Rule to change the bound
variable in a maps-to function, using implicit
substitution. This version of cbvmpo 6024 allows |
| Ref | Expression |
|---|---|
| cbvmpox.1 |
|
| cbvmpox.2 |
|
| cbvmpox.3 |
|
| cbvmpox.4 |
|
| cbvmpox.5 |
|
| cbvmpox.6 |
|
| cbvmpox.7 |
|
| cbvmpox.8 |
|
| Ref | Expression |
|---|---|
| cbvmpox |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. . . . 5
| |
| 2 | cbvmpox.1 |
. . . . . 6
| |
| 3 | 2 | nfcri 2342 |
. . . . 5
|
| 4 | 1, 3 | nfan 1588 |
. . . 4
|
| 5 | cbvmpox.3 |
. . . . 5
| |
| 6 | 5 | nfeq2 2360 |
. . . 4
|
| 7 | 4, 6 | nfan 1588 |
. . 3
|
| 8 | nfv 1551 |
. . . . 5
| |
| 9 | nfcv 2348 |
. . . . . 6
| |
| 10 | 9 | nfcri 2342 |
. . . . 5
|
| 11 | 8, 10 | nfan 1588 |
. . . 4
|
| 12 | cbvmpox.4 |
. . . . 5
| |
| 13 | 12 | nfeq2 2360 |
. . . 4
|
| 14 | 11, 13 | nfan 1588 |
. . 3
|
| 15 | nfv 1551 |
. . . . 5
| |
| 16 | cbvmpox.2 |
. . . . . 6
| |
| 17 | 16 | nfcri 2342 |
. . . . 5
|
| 18 | 15, 17 | nfan 1588 |
. . . 4
|
| 19 | cbvmpox.5 |
. . . . 5
| |
| 20 | 19 | nfeq2 2360 |
. . . 4
|
| 21 | 18, 20 | nfan 1588 |
. . 3
|
| 22 | nfv 1551 |
. . . 4
| |
| 23 | cbvmpox.6 |
. . . . 5
| |
| 24 | 23 | nfeq2 2360 |
. . . 4
|
| 25 | 22, 24 | nfan 1588 |
. . 3
|
| 26 | eleq1 2268 |
. . . . . 6
| |
| 27 | 26 | adantr 276 |
. . . . 5
|
| 28 | cbvmpox.7 |
. . . . . . 7
| |
| 29 | 28 | eleq2d 2275 |
. . . . . 6
|
| 30 | eleq1 2268 |
. . . . . 6
| |
| 31 | 29, 30 | sylan9bb 462 |
. . . . 5
|
| 32 | 27, 31 | anbi12d 473 |
. . . 4
|
| 33 | cbvmpox.8 |
. . . . 5
| |
| 34 | 33 | eqeq2d 2217 |
. . . 4
|
| 35 | 32, 34 | anbi12d 473 |
. . 3
|
| 36 | 7, 14, 21, 25, 35 | cbvoprab12 6019 |
. 2
|
| 37 | df-mpo 5949 |
. 2
| |
| 38 | df-mpo 5949 |
. 2
| |
| 39 | 36, 37, 38 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: cbvmpo 6024 mpomptsx 6283 dmmpossx 6285 |
| Copyright terms: Public domain | W3C validator |