![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmpox | Unicode version |
Description: Rule to change the bound
variable in a maps-to function, using implicit
substitution. This version of cbvmpo 5954 allows ![]() ![]() |
Ref | Expression |
---|---|
cbvmpox.1 |
![]() ![]() ![]() ![]() |
cbvmpox.2 |
![]() ![]() ![]() ![]() |
cbvmpox.3 |
![]() ![]() ![]() ![]() |
cbvmpox.4 |
![]() ![]() ![]() ![]() |
cbvmpox.5 |
![]() ![]() ![]() ![]() |
cbvmpox.6 |
![]() ![]() ![]() ![]() |
cbvmpox.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cbvmpox.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmpox |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cbvmpox.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2313 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfan 1565 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cbvmpox.3 |
. . . . 5
![]() ![]() ![]() ![]() | |
6 | 5 | nfeq2 2331 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | nfan 1565 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | nfv 1528 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | nfcv 2319 |
. . . . . 6
![]() ![]() ![]() ![]() | |
10 | 9 | nfcri 2313 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | nfan 1565 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cbvmpox.4 |
. . . . 5
![]() ![]() ![]() ![]() | |
13 | 12 | nfeq2 2331 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | nfan 1565 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | nfv 1528 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | cbvmpox.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
17 | 16 | nfcri 2313 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | nfan 1565 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | cbvmpox.5 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 19 | nfeq2 2331 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 18, 20 | nfan 1565 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | nfv 1528 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | cbvmpox.6 |
. . . . 5
![]() ![]() ![]() ![]() | |
24 | 23 | nfeq2 2331 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | nfan 1565 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | eleq1 2240 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26 | adantr 276 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | cbvmpox.7 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 28 | eleq2d 2247 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | eleq1 2240 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 29, 30 | sylan9bb 462 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 27, 31 | anbi12d 473 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | cbvmpox.8 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 33 | eqeq2d 2189 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 32, 34 | anbi12d 473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 7, 14, 21, 25, 35 | cbvoprab12 5949 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | df-mpo 5880 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | df-mpo 5880 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 36, 37, 38 | 3eqtr4i 2208 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-opab 4066 df-oprab 5879 df-mpo 5880 |
This theorem is referenced by: cbvmpo 5954 mpomptsx 6198 dmmpossx 6200 |
Copyright terms: Public domain | W3C validator |