ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpox Unicode version

Theorem cbvmpox 5970
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 5971 allows  B to be a function of  x. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
cbvmpox.1  |-  F/_ z B
cbvmpox.2  |-  F/_ x D
cbvmpox.3  |-  F/_ z C
cbvmpox.4  |-  F/_ w C
cbvmpox.5  |-  F/_ x E
cbvmpox.6  |-  F/_ y E
cbvmpox.7  |-  ( x  =  z  ->  B  =  D )
cbvmpox.8  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  E )
Assertion
Ref Expression
cbvmpox  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  D  |->  E )
Distinct variable groups:    x, w, y, z, A    w, B    y, D
Allowed substitution hints:    B( x, y, z)    C( x, y, z, w)    D( x, z, w)    E( x, y, z, w)

Proof of Theorem cbvmpox
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . 5  |-  F/ z  x  e.  A
2 cbvmpox.1 . . . . . 6  |-  F/_ z B
32nfcri 2326 . . . . 5  |-  F/ z  y  e.  B
41, 3nfan 1576 . . . 4  |-  F/ z ( x  e.  A  /\  y  e.  B
)
5 cbvmpox.3 . . . . 5  |-  F/_ z C
65nfeq2 2344 . . . 4  |-  F/ z  u  =  C
74, 6nfan 1576 . . 3  |-  F/ z ( ( x  e.  A  /\  y  e.  B )  /\  u  =  C )
8 nfv 1539 . . . . 5  |-  F/ w  x  e.  A
9 nfcv 2332 . . . . . 6  |-  F/_ w B
109nfcri 2326 . . . . 5  |-  F/ w  y  e.  B
118, 10nfan 1576 . . . 4  |-  F/ w
( x  e.  A  /\  y  e.  B
)
12 cbvmpox.4 . . . . 5  |-  F/_ w C
1312nfeq2 2344 . . . 4  |-  F/ w  u  =  C
1411, 13nfan 1576 . . 3  |-  F/ w
( ( x  e.  A  /\  y  e.  B )  /\  u  =  C )
15 nfv 1539 . . . . 5  |-  F/ x  z  e.  A
16 cbvmpox.2 . . . . . 6  |-  F/_ x D
1716nfcri 2326 . . . . 5  |-  F/ x  w  e.  D
1815, 17nfan 1576 . . . 4  |-  F/ x
( z  e.  A  /\  w  e.  D
)
19 cbvmpox.5 . . . . 5  |-  F/_ x E
2019nfeq2 2344 . . . 4  |-  F/ x  u  =  E
2118, 20nfan 1576 . . 3  |-  F/ x
( ( z  e.  A  /\  w  e.  D )  /\  u  =  E )
22 nfv 1539 . . . 4  |-  F/ y ( z  e.  A  /\  w  e.  D
)
23 cbvmpox.6 . . . . 5  |-  F/_ y E
2423nfeq2 2344 . . . 4  |-  F/ y  u  =  E
2522, 24nfan 1576 . . 3  |-  F/ y ( ( z  e.  A  /\  w  e.  D )  /\  u  =  E )
26 eleq1 2252 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2726adantr 276 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( x  e.  A  <->  z  e.  A ) )
28 cbvmpox.7 . . . . . . 7  |-  ( x  =  z  ->  B  =  D )
2928eleq2d 2259 . . . . . 6  |-  ( x  =  z  ->  (
y  e.  B  <->  y  e.  D ) )
30 eleq1 2252 . . . . . 6  |-  ( y  =  w  ->  (
y  e.  D  <->  w  e.  D ) )
3129, 30sylan9bb 462 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( y  e.  B  <->  w  e.  D ) )
3227, 31anbi12d 473 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( z  e.  A  /\  w  e.  D ) ) )
33 cbvmpox.8 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  E )
3433eqeq2d 2201 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( u  =  C  <-> 
u  =  E ) )
3532, 34anbi12d 473 . . 3  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  u  =  C )  <->  ( (
z  e.  A  /\  w  e.  D )  /\  u  =  E
) ) )
367, 14, 21, 25, 35cbvoprab12 5966 . 2  |-  { <. <.
x ,  y >. ,  u >.  |  (
( x  e.  A  /\  y  e.  B
)  /\  u  =  C ) }  =  { <. <. z ,  w >. ,  u >.  |  ( ( z  e.  A  /\  w  e.  D
)  /\  u  =  E ) }
37 df-mpo 5897 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  u >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  u  =  C ) }
38 df-mpo 5897 . 2  |-  ( z  e.  A ,  w  e.  D  |->  E )  =  { <. <. z ,  w >. ,  u >.  |  ( ( z  e.  A  /\  w  e.  D )  /\  u  =  E ) }
3936, 37, 383eqtr4i 2220 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  D  |->  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   F/_wnfc 2319   {coprab 5893    e. cmpo 5894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-oprab 5896  df-mpo 5897
This theorem is referenced by:  cbvmpo  5971  mpomptsx  6217  dmmpossx  6219
  Copyright terms: Public domain W3C validator