ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpov Unicode version

Theorem cbvmpov 5922
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4077, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1  |-  ( x  =  z  ->  C  =  E )
cbvmpov.2  |-  ( y  =  w  ->  E  =  D )
Assertion
Ref Expression
cbvmpov  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z    w, C, z    x, D, y
Allowed substitution hints:    C( x, y)    D( z, w)    E( x, y, z, w)

Proof of Theorem cbvmpov
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ z C
2 nfcv 2308 . 2  |-  F/_ w C
3 nfcv 2308 . 2  |-  F/_ x D
4 nfcv 2308 . 2  |-  F/_ y D
5 cbvmpov.1 . . 3  |-  ( x  =  z  ->  C  =  E )
6 cbvmpov.2 . . 3  |-  ( y  =  w  ->  E  =  D )
75, 6sylan9eq 2219 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
81, 2, 3, 4, 7cbvmpo 5921 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  frec2uzrdg  10344  frecuzrdgsuc  10349  iseqvalcbv  10392  resqrexlemfp1  10951  resqrex  10968  sqne2sq  12109  ennnfonelemnn0  12355  nninfdc  12386  txbas  12898  xmetxp  13147
  Copyright terms: Public domain W3C validator