ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpov Unicode version

Theorem cbvmpov 5998
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4124, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1  |-  ( x  =  z  ->  C  =  E )
cbvmpov.2  |-  ( y  =  w  ->  E  =  D )
Assertion
Ref Expression
cbvmpov  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z    w, C, z    x, D, y
Allowed substitution hints:    C( x, y)    D( z, w)    E( x, y, z, w)

Proof of Theorem cbvmpov
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ z C
2 nfcv 2336 . 2  |-  F/_ w C
3 nfcv 2336 . 2  |-  F/_ x D
4 nfcv 2336 . 2  |-  F/_ y D
5 cbvmpov.1 . . 3  |-  ( x  =  z  ->  C  =  E )
6 cbvmpov.2 . . 3  |-  ( y  =  w  ->  E  =  D )
75, 6sylan9eq 2246 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
81, 2, 3, 4, 7cbvmpo 5997 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  frec2uzrdg  10480  frecuzrdgsuc  10485  iseqvalcbv  10530  resqrexlemfp1  11153  resqrex  11170  sqne2sq  12315  ennnfonelemnn0  12579  nninfdc  12610  txbas  14426  xmetxp  14675
  Copyright terms: Public domain W3C validator