ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpov Unicode version

Theorem cbvmpov 6048
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4155, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1  |-  ( x  =  z  ->  C  =  E )
cbvmpov.2  |-  ( y  =  w  ->  E  =  D )
Assertion
Ref Expression
cbvmpov  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z    w, C, z    x, D, y
Allowed substitution hints:    C( x, y)    D( z, w)    E( x, y, z, w)

Proof of Theorem cbvmpov
StepHypRef Expression
1 nfcv 2350 . 2  |-  F/_ z C
2 nfcv 2350 . 2  |-  F/_ w C
3 nfcv 2350 . 2  |-  F/_ x D
4 nfcv 2350 . 2  |-  F/_ y D
5 cbvmpov.1 . . 3  |-  ( x  =  z  ->  C  =  E )
6 cbvmpov.2 . . 3  |-  ( y  =  w  ->  E  =  D )
75, 6sylan9eq 2260 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
81, 2, 3, 4, 7cbvmpo 6047 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-oprab 5971  df-mpo 5972
This theorem is referenced by:  frec2uzrdg  10591  frecuzrdgsuc  10596  iseqvalcbv  10641  resqrexlemfp1  11435  resqrex  11452  sqne2sq  12614  ennnfonelemnn0  12908  nninfdc  12939  txbas  14845  xmetxp  15094  mpomulcn  15153
  Copyright terms: Public domain W3C validator