ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpov Unicode version

Theorem cbvmpov 6002
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4128, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1  |-  ( x  =  z  ->  C  =  E )
cbvmpov.2  |-  ( y  =  w  ->  E  =  D )
Assertion
Ref Expression
cbvmpov  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z    w, C, z    x, D, y
Allowed substitution hints:    C( x, y)    D( z, w)    E( x, y, z, w)

Proof of Theorem cbvmpov
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ z C
2 nfcv 2339 . 2  |-  F/_ w C
3 nfcv 2339 . 2  |-  F/_ x D
4 nfcv 2339 . 2  |-  F/_ y D
5 cbvmpov.1 . . 3  |-  ( x  =  z  ->  C  =  E )
6 cbvmpov.2 . . 3  |-  ( y  =  w  ->  E  =  D )
75, 6sylan9eq 2249 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
81, 2, 3, 4, 7cbvmpo 6001 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  frec2uzrdg  10501  frecuzrdgsuc  10506  iseqvalcbv  10551  resqrexlemfp1  11174  resqrex  11191  sqne2sq  12345  ennnfonelemnn0  12639  nninfdc  12670  txbas  14494  xmetxp  14743  mpomulcn  14802
  Copyright terms: Public domain W3C validator