![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmpo | GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
Ref | Expression |
---|---|
cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑧𝐵 | |
2 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
7 | eqidd 2194 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 5996 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnfc 2323 ∈ cmpo 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-oprab 5922 df-mpo 5923 |
This theorem is referenced by: cbvmpov 5998 fnmpoovd 6268 fmpoco 6269 xpf1o 6900 cnmpt2t 14461 |
Copyright terms: Public domain | W3C validator |