| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpo | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
| Ref | Expression |
|---|---|
| cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
| cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
| cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
| cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
| cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑧𝐵 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
| 5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
| 7 | eqidd 2207 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
| 8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 6041 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnfc 2336 ∈ cmpo 5964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4117 df-oprab 5966 df-mpo 5967 |
| This theorem is referenced by: cbvmpov 6043 fvmpopr2d 6100 fnmpoovd 6319 fmpoco 6320 xpf1o 6961 cnmpt2t 14850 |
| Copyright terms: Public domain | W3C validator |