| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpoco | Unicode version | ||
| Description: Composition of two functions. Variation of fmptco 5800 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpoco.1 |
|
| fmpoco.2 |
|
| fmpoco.3 |
|
| fmpoco.4 |
|
| Ref | Expression |
|---|---|
| fmpoco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpoco.1 |
. . . . . 6
| |
| 2 | 1 | ralrimivva 2612 |
. . . . 5
|
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | 3 | fmpo 6345 |
. . . . 5
|
| 5 | 2, 4 | sylib 122 |
. . . 4
|
| 6 | nfcv 2372 |
. . . . . . 7
| |
| 7 | nfcv 2372 |
. . . . . . 7
| |
| 8 | nfcv 2372 |
. . . . . . . 8
| |
| 9 | nfcsb1v 3157 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfcsb 3162 |
. . . . . . 7
|
| 11 | nfcsb1v 3157 |
. . . . . . 7
| |
| 12 | csbeq1a 3133 |
. . . . . . . 8
| |
| 13 | csbeq1a 3133 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylan9eq 2282 |
. . . . . . 7
|
| 15 | 6, 7, 10, 11, 14 | cbvmpo 6082 |
. . . . . 6
|
| 16 | vex 2802 |
. . . . . . . . . 10
| |
| 17 | vex 2802 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | op2ndd 6293 |
. . . . . . . . 9
|
| 19 | 18 | csbeq1d 3131 |
. . . . . . . 8
|
| 20 | 16, 17 | op1std 6292 |
. . . . . . . . . 10
|
| 21 | 20 | csbeq1d 3131 |
. . . . . . . . 9
|
| 22 | 21 | csbeq2dv 3150 |
. . . . . . . 8
|
| 23 | 19, 22 | eqtrd 2262 |
. . . . . . 7
|
| 24 | 23 | mpompt 6095 |
. . . . . 6
|
| 25 | 15, 24 | eqtr4i 2253 |
. . . . 5
|
| 26 | 25 | fmpt 5784 |
. . . 4
|
| 27 | 5, 26 | sylibr 134 |
. . 3
|
| 28 | fmpoco.2 |
. . . 4
| |
| 29 | 28, 25 | eqtrdi 2278 |
. . 3
|
| 30 | fmpoco.3 |
. . 3
| |
| 31 | 27, 29, 30 | fmptcos 5802 |
. 2
|
| 32 | 23 | csbeq1d 3131 |
. . . . 5
|
| 33 | 32 | mpompt 6095 |
. . . 4
|
| 34 | nfcv 2372 |
. . . . 5
| |
| 35 | nfcv 2372 |
. . . . 5
| |
| 36 | nfcv 2372 |
. . . . . 6
| |
| 37 | 10, 36 | nfcsb 3162 |
. . . . 5
|
| 38 | nfcv 2372 |
. . . . . 6
| |
| 39 | 11, 38 | nfcsb 3162 |
. . . . 5
|
| 40 | 14 | csbeq1d 3131 |
. . . . 5
|
| 41 | 34, 35, 37, 39, 40 | cbvmpo 6082 |
. . . 4
|
| 42 | 33, 41 | eqtr4i 2253 |
. . 3
|
| 43 | 1 | 3impb 1223 |
. . . . 5
|
| 44 | nfcvd 2373 |
. . . . . 6
| |
| 45 | fmpoco.4 |
. . . . . 6
| |
| 46 | 44, 45 | csbiegf 3168 |
. . . . 5
|
| 47 | 43, 46 | syl 14 |
. . . 4
|
| 48 | 47 | mpoeq3dva 6067 |
. . 3
|
| 49 | 42, 48 | eqtrid 2274 |
. 2
|
| 50 | 31, 49 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: oprabco 6361 txswaphmeolem 14988 bdxmet 15169 |
| Copyright terms: Public domain | W3C validator |