Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmpoco | Unicode version |
Description: Composition of two functions. Variation of fmptco 5651 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
fmpoco.1 | |
fmpoco.2 | |
fmpoco.3 | |
fmpoco.4 |
Ref | Expression |
---|---|
fmpoco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpoco.1 | . . . . . 6 | |
2 | 1 | ralrimivva 2548 | . . . . 5 |
3 | eqid 2165 | . . . . . 6 | |
4 | 3 | fmpo 6169 | . . . . 5 |
5 | 2, 4 | sylib 121 | . . . 4 |
6 | nfcv 2308 | . . . . . . 7 | |
7 | nfcv 2308 | . . . . . . 7 | |
8 | nfcv 2308 | . . . . . . . 8 | |
9 | nfcsb1v 3078 | . . . . . . . 8 | |
10 | 8, 9 | nfcsb 3082 | . . . . . . 7 |
11 | nfcsb1v 3078 | . . . . . . 7 | |
12 | csbeq1a 3054 | . . . . . . . 8 | |
13 | csbeq1a 3054 | . . . . . . . 8 | |
14 | 12, 13 | sylan9eq 2219 | . . . . . . 7 |
15 | 6, 7, 10, 11, 14 | cbvmpo 5921 | . . . . . 6 |
16 | vex 2729 | . . . . . . . . . 10 | |
17 | vex 2729 | . . . . . . . . . 10 | |
18 | 16, 17 | op2ndd 6117 | . . . . . . . . 9 |
19 | 18 | csbeq1d 3052 | . . . . . . . 8 |
20 | 16, 17 | op1std 6116 | . . . . . . . . . 10 |
21 | 20 | csbeq1d 3052 | . . . . . . . . 9 |
22 | 21 | csbeq2dv 3071 | . . . . . . . 8 |
23 | 19, 22 | eqtrd 2198 | . . . . . . 7 |
24 | 23 | mpompt 5934 | . . . . . 6 |
25 | 15, 24 | eqtr4i 2189 | . . . . 5 |
26 | 25 | fmpt 5635 | . . . 4 |
27 | 5, 26 | sylibr 133 | . . 3 |
28 | fmpoco.2 | . . . 4 | |
29 | 28, 25 | eqtrdi 2215 | . . 3 |
30 | fmpoco.3 | . . 3 | |
31 | 27, 29, 30 | fmptcos 5653 | . 2 |
32 | 23 | csbeq1d 3052 | . . . . 5 |
33 | 32 | mpompt 5934 | . . . 4 |
34 | nfcv 2308 | . . . . 5 | |
35 | nfcv 2308 | . . . . 5 | |
36 | nfcv 2308 | . . . . . 6 | |
37 | 10, 36 | nfcsb 3082 | . . . . 5 |
38 | nfcv 2308 | . . . . . 6 | |
39 | 11, 38 | nfcsb 3082 | . . . . 5 |
40 | 14 | csbeq1d 3052 | . . . . 5 |
41 | 34, 35, 37, 39, 40 | cbvmpo 5921 | . . . 4 |
42 | 33, 41 | eqtr4i 2189 | . . 3 |
43 | 1 | 3impb 1189 | . . . . 5 |
44 | nfcvd 2309 | . . . . . 6 | |
45 | fmpoco.4 | . . . . . 6 | |
46 | 44, 45 | csbiegf 3088 | . . . . 5 |
47 | 43, 46 | syl 14 | . . . 4 |
48 | 47 | mpoeq3dva 5906 | . . 3 |
49 | 42, 48 | syl5eq 2211 | . 2 |
50 | 31, 49 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 csb 3045 cop 3579 cmpt 4043 cxp 4602 ccom 4608 wf 5184 cfv 5188 cmpo 5844 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: oprabco 6185 txswaphmeolem 12960 bdxmet 13141 |
Copyright terms: Public domain | W3C validator |