Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmpoco | Unicode version |
Description: Composition of two functions. Variation of fmptco 5662 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
fmpoco.1 | |
fmpoco.2 | |
fmpoco.3 | |
fmpoco.4 |
Ref | Expression |
---|---|
fmpoco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpoco.1 | . . . . . 6 | |
2 | 1 | ralrimivva 2552 | . . . . 5 |
3 | eqid 2170 | . . . . . 6 | |
4 | 3 | fmpo 6180 | . . . . 5 |
5 | 2, 4 | sylib 121 | . . . 4 |
6 | nfcv 2312 | . . . . . . 7 | |
7 | nfcv 2312 | . . . . . . 7 | |
8 | nfcv 2312 | . . . . . . . 8 | |
9 | nfcsb1v 3082 | . . . . . . . 8 | |
10 | 8, 9 | nfcsb 3086 | . . . . . . 7 |
11 | nfcsb1v 3082 | . . . . . . 7 | |
12 | csbeq1a 3058 | . . . . . . . 8 | |
13 | csbeq1a 3058 | . . . . . . . 8 | |
14 | 12, 13 | sylan9eq 2223 | . . . . . . 7 |
15 | 6, 7, 10, 11, 14 | cbvmpo 5932 | . . . . . 6 |
16 | vex 2733 | . . . . . . . . . 10 | |
17 | vex 2733 | . . . . . . . . . 10 | |
18 | 16, 17 | op2ndd 6128 | . . . . . . . . 9 |
19 | 18 | csbeq1d 3056 | . . . . . . . 8 |
20 | 16, 17 | op1std 6127 | . . . . . . . . . 10 |
21 | 20 | csbeq1d 3056 | . . . . . . . . 9 |
22 | 21 | csbeq2dv 3075 | . . . . . . . 8 |
23 | 19, 22 | eqtrd 2203 | . . . . . . 7 |
24 | 23 | mpompt 5945 | . . . . . 6 |
25 | 15, 24 | eqtr4i 2194 | . . . . 5 |
26 | 25 | fmpt 5646 | . . . 4 |
27 | 5, 26 | sylibr 133 | . . 3 |
28 | fmpoco.2 | . . . 4 | |
29 | 28, 25 | eqtrdi 2219 | . . 3 |
30 | fmpoco.3 | . . 3 | |
31 | 27, 29, 30 | fmptcos 5664 | . 2 |
32 | 23 | csbeq1d 3056 | . . . . 5 |
33 | 32 | mpompt 5945 | . . . 4 |
34 | nfcv 2312 | . . . . 5 | |
35 | nfcv 2312 | . . . . 5 | |
36 | nfcv 2312 | . . . . . 6 | |
37 | 10, 36 | nfcsb 3086 | . . . . 5 |
38 | nfcv 2312 | . . . . . 6 | |
39 | 11, 38 | nfcsb 3086 | . . . . 5 |
40 | 14 | csbeq1d 3056 | . . . . 5 |
41 | 34, 35, 37, 39, 40 | cbvmpo 5932 | . . . 4 |
42 | 33, 41 | eqtr4i 2194 | . . 3 |
43 | 1 | 3impb 1194 | . . . . 5 |
44 | nfcvd 2313 | . . . . . 6 | |
45 | fmpoco.4 | . . . . . 6 | |
46 | 44, 45 | csbiegf 3092 | . . . . 5 |
47 | 43, 46 | syl 14 | . . . 4 |
48 | 47 | mpoeq3dva 5917 | . . 3 |
49 | 42, 48 | eqtrid 2215 | . 2 |
50 | 31, 49 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 csb 3049 cop 3586 cmpt 4050 cxp 4609 ccom 4615 wf 5194 cfv 5198 cmpo 5855 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: oprabco 6196 txswaphmeolem 13114 bdxmet 13295 |
Copyright terms: Public domain | W3C validator |