| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpoco | Unicode version | ||
| Description: Composition of two functions. Variation of fmptco 5746 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpoco.1 |
|
| fmpoco.2 |
|
| fmpoco.3 |
|
| fmpoco.4 |
|
| Ref | Expression |
|---|---|
| fmpoco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpoco.1 |
. . . . . 6
| |
| 2 | 1 | ralrimivva 2588 |
. . . . 5
|
| 3 | eqid 2205 |
. . . . . 6
| |
| 4 | 3 | fmpo 6287 |
. . . . 5
|
| 5 | 2, 4 | sylib 122 |
. . . 4
|
| 6 | nfcv 2348 |
. . . . . . 7
| |
| 7 | nfcv 2348 |
. . . . . . 7
| |
| 8 | nfcv 2348 |
. . . . . . . 8
| |
| 9 | nfcsb1v 3126 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfcsb 3131 |
. . . . . . 7
|
| 11 | nfcsb1v 3126 |
. . . . . . 7
| |
| 12 | csbeq1a 3102 |
. . . . . . . 8
| |
| 13 | csbeq1a 3102 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylan9eq 2258 |
. . . . . . 7
|
| 15 | 6, 7, 10, 11, 14 | cbvmpo 6024 |
. . . . . 6
|
| 16 | vex 2775 |
. . . . . . . . . 10
| |
| 17 | vex 2775 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | op2ndd 6235 |
. . . . . . . . 9
|
| 19 | 18 | csbeq1d 3100 |
. . . . . . . 8
|
| 20 | 16, 17 | op1std 6234 |
. . . . . . . . . 10
|
| 21 | 20 | csbeq1d 3100 |
. . . . . . . . 9
|
| 22 | 21 | csbeq2dv 3119 |
. . . . . . . 8
|
| 23 | 19, 22 | eqtrd 2238 |
. . . . . . 7
|
| 24 | 23 | mpompt 6037 |
. . . . . 6
|
| 25 | 15, 24 | eqtr4i 2229 |
. . . . 5
|
| 26 | 25 | fmpt 5730 |
. . . 4
|
| 27 | 5, 26 | sylibr 134 |
. . 3
|
| 28 | fmpoco.2 |
. . . 4
| |
| 29 | 28, 25 | eqtrdi 2254 |
. . 3
|
| 30 | fmpoco.3 |
. . 3
| |
| 31 | 27, 29, 30 | fmptcos 5748 |
. 2
|
| 32 | 23 | csbeq1d 3100 |
. . . . 5
|
| 33 | 32 | mpompt 6037 |
. . . 4
|
| 34 | nfcv 2348 |
. . . . 5
| |
| 35 | nfcv 2348 |
. . . . 5
| |
| 36 | nfcv 2348 |
. . . . . 6
| |
| 37 | 10, 36 | nfcsb 3131 |
. . . . 5
|
| 38 | nfcv 2348 |
. . . . . 6
| |
| 39 | 11, 38 | nfcsb 3131 |
. . . . 5
|
| 40 | 14 | csbeq1d 3100 |
. . . . 5
|
| 41 | 34, 35, 37, 39, 40 | cbvmpo 6024 |
. . . 4
|
| 42 | 33, 41 | eqtr4i 2229 |
. . 3
|
| 43 | 1 | 3impb 1202 |
. . . . 5
|
| 44 | nfcvd 2349 |
. . . . . 6
| |
| 45 | fmpoco.4 |
. . . . . 6
| |
| 46 | 44, 45 | csbiegf 3137 |
. . . . 5
|
| 47 | 43, 46 | syl 14 |
. . . 4
|
| 48 | 47 | mpoeq3dva 6009 |
. . 3
|
| 49 | 42, 48 | eqtrid 2250 |
. 2
|
| 50 | 31, 49 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: oprabco 6303 txswaphmeolem 14792 bdxmet 14973 |
| Copyright terms: Public domain | W3C validator |