| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpoco | Unicode version | ||
| Description: Composition of two functions. Variation of fmptco 5769 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpoco.1 |
|
| fmpoco.2 |
|
| fmpoco.3 |
|
| fmpoco.4 |
|
| Ref | Expression |
|---|---|
| fmpoco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpoco.1 |
. . . . . 6
| |
| 2 | 1 | ralrimivva 2590 |
. . . . 5
|
| 3 | eqid 2207 |
. . . . . 6
| |
| 4 | 3 | fmpo 6310 |
. . . . 5
|
| 5 | 2, 4 | sylib 122 |
. . . 4
|
| 6 | nfcv 2350 |
. . . . . . 7
| |
| 7 | nfcv 2350 |
. . . . . . 7
| |
| 8 | nfcv 2350 |
. . . . . . . 8
| |
| 9 | nfcsb1v 3134 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfcsb 3139 |
. . . . . . 7
|
| 11 | nfcsb1v 3134 |
. . . . . . 7
| |
| 12 | csbeq1a 3110 |
. . . . . . . 8
| |
| 13 | csbeq1a 3110 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylan9eq 2260 |
. . . . . . 7
|
| 15 | 6, 7, 10, 11, 14 | cbvmpo 6047 |
. . . . . 6
|
| 16 | vex 2779 |
. . . . . . . . . 10
| |
| 17 | vex 2779 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | op2ndd 6258 |
. . . . . . . . 9
|
| 19 | 18 | csbeq1d 3108 |
. . . . . . . 8
|
| 20 | 16, 17 | op1std 6257 |
. . . . . . . . . 10
|
| 21 | 20 | csbeq1d 3108 |
. . . . . . . . 9
|
| 22 | 21 | csbeq2dv 3127 |
. . . . . . . 8
|
| 23 | 19, 22 | eqtrd 2240 |
. . . . . . 7
|
| 24 | 23 | mpompt 6060 |
. . . . . 6
|
| 25 | 15, 24 | eqtr4i 2231 |
. . . . 5
|
| 26 | 25 | fmpt 5753 |
. . . 4
|
| 27 | 5, 26 | sylibr 134 |
. . 3
|
| 28 | fmpoco.2 |
. . . 4
| |
| 29 | 28, 25 | eqtrdi 2256 |
. . 3
|
| 30 | fmpoco.3 |
. . 3
| |
| 31 | 27, 29, 30 | fmptcos 5771 |
. 2
|
| 32 | 23 | csbeq1d 3108 |
. . . . 5
|
| 33 | 32 | mpompt 6060 |
. . . 4
|
| 34 | nfcv 2350 |
. . . . 5
| |
| 35 | nfcv 2350 |
. . . . 5
| |
| 36 | nfcv 2350 |
. . . . . 6
| |
| 37 | 10, 36 | nfcsb 3139 |
. . . . 5
|
| 38 | nfcv 2350 |
. . . . . 6
| |
| 39 | 11, 38 | nfcsb 3139 |
. . . . 5
|
| 40 | 14 | csbeq1d 3108 |
. . . . 5
|
| 41 | 34, 35, 37, 39, 40 | cbvmpo 6047 |
. . . 4
|
| 42 | 33, 41 | eqtr4i 2231 |
. . 3
|
| 43 | 1 | 3impb 1202 |
. . . . 5
|
| 44 | nfcvd 2351 |
. . . . . 6
| |
| 45 | fmpoco.4 |
. . . . . 6
| |
| 46 | 44, 45 | csbiegf 3145 |
. . . . 5
|
| 47 | 43, 46 | syl 14 |
. . . 4
|
| 48 | 47 | mpoeq3dva 6032 |
. . 3
|
| 49 | 42, 48 | eqtrid 2252 |
. 2
|
| 50 | 31, 49 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: oprabco 6326 txswaphmeolem 14907 bdxmet 15088 |
| Copyright terms: Public domain | W3C validator |