ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpoco Unicode version

Theorem fmpoco 6175
Description: Composition of two functions. Variation of fmptco 5645 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpoco.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
fmpoco.2  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
fmpoco.3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
fmpoco.4  |-  ( z  =  R  ->  S  =  T )
Assertion
Ref Expression
fmpoco  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Distinct variable groups:    x, y, B   
x, z, C, y    ph, x, y    x, S, y    x, A, y   
z, R    z, T
Allowed substitution hints:    ph( z)    A( z)    B( z)    R( x, y)    S( z)    T( x, y)    F( x, y, z)    G( x, y, z)

Proof of Theorem fmpoco
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpoco.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
21ralrimivva 2546 . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  R  e.  C )
3 eqid 2164 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( x  e.  A ,  y  e.  B  |->  R )
43fmpo 6161 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  R  e.  C  <->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B
) --> C )
52, 4sylib 121 . . . 4  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B ) --> C )
6 nfcv 2306 . . . . . . 7  |-  F/_ u R
7 nfcv 2306 . . . . . . 7  |-  F/_ v R
8 nfcv 2306 . . . . . . . 8  |-  F/_ x
v
9 nfcsb1v 3073 . . . . . . . 8  |-  F/_ x [_ u  /  x ]_ R
108, 9nfcsb 3077 . . . . . . 7  |-  F/_ x [_ v  /  y ]_ [_ u  /  x ]_ R
11 nfcsb1v 3073 . . . . . . 7  |-  F/_ y [_ v  /  y ]_ [_ u  /  x ]_ R
12 csbeq1a 3049 . . . . . . . 8  |-  ( x  =  u  ->  R  =  [_ u  /  x ]_ R )
13 csbeq1a 3049 . . . . . . . 8  |-  ( y  =  v  ->  [_ u  /  x ]_ R  = 
[_ v  /  y ]_ [_ u  /  x ]_ R )
1412, 13sylan9eq 2217 . . . . . . 7  |-  ( ( x  =  u  /\  y  =  v )  ->  R  =  [_ v  /  y ]_ [_ u  /  x ]_ R )
156, 7, 10, 11, 14cbvmpo 5912 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( u  e.  A ,  v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
16 vex 2724 . . . . . . . . . 10  |-  u  e. 
_V
17 vex 2724 . . . . . . . . . 10  |-  v  e. 
_V
1816, 17op2ndd 6109 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  ( 2nd `  w
)  =  v )
1918csbeq1d 3047 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )
2016, 17op1std 6108 . . . . . . . . . 10  |-  ( w  =  <. u ,  v
>.  ->  ( 1st `  w
)  =  u )
2120csbeq1d 3047 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 1st `  w
)  /  x ]_ R  =  [_ u  /  x ]_ R )
2221csbeq2dv 3066 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ v  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2319, 22eqtrd 2197 . . . . . . 7  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2423mpompt 5925 . . . . . 6  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )  =  ( u  e.  A , 
v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
2515, 24eqtr4i 2188 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R )
2625fmpt 5629 . . . 4  |-  ( A. w  e.  ( A  X.  B ) [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  e.  C  <->  ( x  e.  A , 
y  e.  B  |->  R ) : ( A  X.  B ) --> C )
275, 26sylibr 133 . . 3  |-  ( ph  ->  A. w  e.  ( A  X.  B )
[_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  e.  C )
28 fmpoco.2 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
2928, 25eqtrdi 2213 . . 3  |-  ( ph  ->  F  =  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R ) )
30 fmpoco.3 . . 3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
3127, 29, 30fmptcos 5647 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S ) )
3223csbeq1d 3047 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S  =  [_ [_ v  / 
y ]_ [_ u  /  x ]_ R  /  z ]_ S )
3332mpompt 5925 . . . 4  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( u  e.  A , 
v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
)
34 nfcv 2306 . . . . 5  |-  F/_ u [_ R  /  z ]_ S
35 nfcv 2306 . . . . 5  |-  F/_ v [_ R  /  z ]_ S
36 nfcv 2306 . . . . . 6  |-  F/_ x S
3710, 36nfcsb 3077 . . . . 5  |-  F/_ x [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
38 nfcv 2306 . . . . . 6  |-  F/_ y S
3911, 38nfcsb 3077 . . . . 5  |-  F/_ y [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
4014csbeq1d 3047 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  [_ R  /  z ]_ S  =  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4134, 35, 37, 39, 40cbvmpo 5912 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  [_ R  /  z ]_ S
)  =  ( u  e.  A ,  v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4233, 41eqtr4i 2188 . . 3  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  [_ R  /  z ]_ S
)
4313impb 1188 . . . . 5  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  R  e.  C )
44 nfcvd 2307 . . . . . 6  |-  ( R  e.  C  ->  F/_ z T )
45 fmpoco.4 . . . . . 6  |-  ( z  =  R  ->  S  =  T )
4644, 45csbiegf 3083 . . . . 5  |-  ( R  e.  C  ->  [_ R  /  z ]_ S  =  T )
4743, 46syl 14 . . . 4  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  [_ R  / 
z ]_ S  =  T )
4847mpoeq3dva 5897 . . 3  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |-> 
[_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  T ) )
4942, 48syl5eq 2209 . 2  |-  ( ph  ->  ( w  e.  ( A  X.  B ) 
|->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
5031, 49eqtrd 2197 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   A.wral 2442   [_csb 3040   <.cop 3573    |-> cmpt 4037    X. cxp 4596    o. ccom 4602   -->wf 5178   ` cfv 5182    e. cmpo 5838   1stc1st 6098   2ndc2nd 6099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101
This theorem is referenced by:  oprabco  6176  txswaphmeolem  12861  bdxmet  13042
  Copyright terms: Public domain W3C validator