ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpoco Unicode version

Theorem fmpoco 6184
Description: Composition of two functions. Variation of fmptco 5651 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpoco.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
fmpoco.2  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
fmpoco.3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
fmpoco.4  |-  ( z  =  R  ->  S  =  T )
Assertion
Ref Expression
fmpoco  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Distinct variable groups:    x, y, B   
x, z, C, y    ph, x, y    x, S, y    x, A, y   
z, R    z, T
Allowed substitution hints:    ph( z)    A( z)    B( z)    R( x, y)    S( z)    T( x, y)    F( x, y, z)    G( x, y, z)

Proof of Theorem fmpoco
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpoco.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
21ralrimivva 2548 . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  R  e.  C )
3 eqid 2165 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( x  e.  A ,  y  e.  B  |->  R )
43fmpo 6169 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  R  e.  C  <->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B
) --> C )
52, 4sylib 121 . . . 4  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B ) --> C )
6 nfcv 2308 . . . . . . 7  |-  F/_ u R
7 nfcv 2308 . . . . . . 7  |-  F/_ v R
8 nfcv 2308 . . . . . . . 8  |-  F/_ x
v
9 nfcsb1v 3078 . . . . . . . 8  |-  F/_ x [_ u  /  x ]_ R
108, 9nfcsb 3082 . . . . . . 7  |-  F/_ x [_ v  /  y ]_ [_ u  /  x ]_ R
11 nfcsb1v 3078 . . . . . . 7  |-  F/_ y [_ v  /  y ]_ [_ u  /  x ]_ R
12 csbeq1a 3054 . . . . . . . 8  |-  ( x  =  u  ->  R  =  [_ u  /  x ]_ R )
13 csbeq1a 3054 . . . . . . . 8  |-  ( y  =  v  ->  [_ u  /  x ]_ R  = 
[_ v  /  y ]_ [_ u  /  x ]_ R )
1412, 13sylan9eq 2219 . . . . . . 7  |-  ( ( x  =  u  /\  y  =  v )  ->  R  =  [_ v  /  y ]_ [_ u  /  x ]_ R )
156, 7, 10, 11, 14cbvmpo 5921 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( u  e.  A ,  v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
16 vex 2729 . . . . . . . . . 10  |-  u  e. 
_V
17 vex 2729 . . . . . . . . . 10  |-  v  e. 
_V
1816, 17op2ndd 6117 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  ( 2nd `  w
)  =  v )
1918csbeq1d 3052 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )
2016, 17op1std 6116 . . . . . . . . . 10  |-  ( w  =  <. u ,  v
>.  ->  ( 1st `  w
)  =  u )
2120csbeq1d 3052 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 1st `  w
)  /  x ]_ R  =  [_ u  /  x ]_ R )
2221csbeq2dv 3071 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ v  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2319, 22eqtrd 2198 . . . . . . 7  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2423mpompt 5934 . . . . . 6  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )  =  ( u  e.  A , 
v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
2515, 24eqtr4i 2189 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R )
2625fmpt 5635 . . . 4  |-  ( A. w  e.  ( A  X.  B ) [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  e.  C  <->  ( x  e.  A , 
y  e.  B  |->  R ) : ( A  X.  B ) --> C )
275, 26sylibr 133 . . 3  |-  ( ph  ->  A. w  e.  ( A  X.  B )
[_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  e.  C )
28 fmpoco.2 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
2928, 25eqtrdi 2215 . . 3  |-  ( ph  ->  F  =  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R ) )
30 fmpoco.3 . . 3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
3127, 29, 30fmptcos 5653 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S ) )
3223csbeq1d 3052 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S  =  [_ [_ v  / 
y ]_ [_ u  /  x ]_ R  /  z ]_ S )
3332mpompt 5934 . . . 4  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( u  e.  A , 
v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
)
34 nfcv 2308 . . . . 5  |-  F/_ u [_ R  /  z ]_ S
35 nfcv 2308 . . . . 5  |-  F/_ v [_ R  /  z ]_ S
36 nfcv 2308 . . . . . 6  |-  F/_ x S
3710, 36nfcsb 3082 . . . . 5  |-  F/_ x [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
38 nfcv 2308 . . . . . 6  |-  F/_ y S
3911, 38nfcsb 3082 . . . . 5  |-  F/_ y [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
4014csbeq1d 3052 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  [_ R  /  z ]_ S  =  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4134, 35, 37, 39, 40cbvmpo 5921 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  [_ R  /  z ]_ S
)  =  ( u  e.  A ,  v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4233, 41eqtr4i 2189 . . 3  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  [_ R  /  z ]_ S
)
4313impb 1189 . . . . 5  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  R  e.  C )
44 nfcvd 2309 . . . . . 6  |-  ( R  e.  C  ->  F/_ z T )
45 fmpoco.4 . . . . . 6  |-  ( z  =  R  ->  S  =  T )
4644, 45csbiegf 3088 . . . . 5  |-  ( R  e.  C  ->  [_ R  /  z ]_ S  =  T )
4743, 46syl 14 . . . 4  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  [_ R  / 
z ]_ S  =  T )
4847mpoeq3dva 5906 . . 3  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |-> 
[_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  T ) )
4942, 48syl5eq 2211 . 2  |-  ( ph  ->  ( w  e.  ( A  X.  B ) 
|->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
5031, 49eqtrd 2198 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045   <.cop 3579    |-> cmpt 4043    X. cxp 4602    o. ccom 4608   -->wf 5184   ` cfv 5188    e. cmpo 5844   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109
This theorem is referenced by:  oprabco  6185  txswaphmeolem  12960  bdxmet  13141
  Copyright terms: Public domain W3C validator