ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab2 Unicode version

Theorem cbvopab2 3942
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
Hypotheses
Ref Expression
cbvopab2.1  |-  F/ z
ph
cbvopab2.2  |-  F/ y ps
cbvopab2.3  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvopab2  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem cbvopab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1476 . . . . . 6  |-  F/ z  w  =  <. x ,  y >.
2 cbvopab2.1 . . . . . 6  |-  F/ z
ph
31, 2nfan 1512 . . . . 5  |-  F/ z ( w  =  <. x ,  y >.  /\  ph )
4 nfv 1476 . . . . . 6  |-  F/ y  w  =  <. x ,  z >.
5 cbvopab2.2 . . . . . 6  |-  F/ y ps
64, 5nfan 1512 . . . . 5  |-  F/ y ( w  =  <. x ,  z >.  /\  ps )
7 opeq2 3653 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
87eqeq2d 2111 . . . . . 6  |-  ( y  =  z  ->  (
w  =  <. x ,  y >.  <->  w  =  <. x ,  z >.
) )
9 cbvopab2.3 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
108, 9anbi12d 460 . . . . 5  |-  ( y  =  z  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  z >.  /\  ps ) ) )
113, 6, 10cbvex 1697 . . . 4  |-  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. z
( w  =  <. x ,  z >.  /\  ps ) )
1211exbii 1552 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. z
( w  =  <. x ,  z >.  /\  ps ) )
1312abbii 2215 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. x E. z ( w  = 
<. x ,  z >.  /\  ps ) }
14 df-opab 3930 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
15 df-opab 3930 . 2  |-  { <. x ,  z >.  |  ps }  =  { w  |  E. x E. z
( w  =  <. x ,  z >.  /\  ps ) }
1613, 14, 153eqtr4i 2130 1  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299   F/wnf 1404   E.wex 1436   {cab 2086   <.cop 3477   {copab 3928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-opab 3930
This theorem is referenced by:  cbvoprab3  5779
  Copyright terms: Public domain W3C validator