Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvopab2 | GIF version |
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
cbvopab2.1 | ⊢ Ⅎ𝑧𝜑 |
cbvopab2.2 | ⊢ Ⅎ𝑦𝜓 |
cbvopab2.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab2 | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉 | |
2 | cbvopab2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
3 | 1, 2 | nfan 1558 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | nfv 1521 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤 = 〈𝑥, 𝑧〉 | |
5 | cbvopab2.2 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
6 | 4, 5 | nfan 1558 | . . . . 5 ⊢ Ⅎ𝑦(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓) |
7 | opeq2 3766 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉) | |
8 | 7 | eqeq2d 2182 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑥, 𝑧〉)) |
9 | cbvopab2.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | anbi12d 470 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓))) |
11 | 3, 6, 10 | cbvex 1749 | . . . 4 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)) |
12 | 11 | exbii 1598 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)) |
13 | 12 | abbii 2286 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)} |
14 | df-opab 4051 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
15 | df-opab 4051 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)} | |
16 | 13, 14, 15 | 3eqtr4i 2201 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 Ⅎwnf 1453 ∃wex 1485 {cab 2156 〈cop 3586 {copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 |
This theorem is referenced by: cbvoprab3 5929 |
Copyright terms: Public domain | W3C validator |