![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvopab2 | GIF version |
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
cbvopab2.1 | ⊢ Ⅎ𝑧𝜑 |
cbvopab2.2 | ⊢ Ⅎ𝑦𝜓 |
cbvopab2.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab2 | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = ⟨𝑥, 𝑦⟩ | |
2 | cbvopab2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
3 | 1, 2 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
4 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤 = ⟨𝑥, 𝑧⟩ | |
5 | cbvopab2.2 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
6 | 4, 5 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑦(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓) |
7 | opeq2 3781 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩) | |
8 | 7 | eqeq2d 2189 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑧⟩)) |
9 | cbvopab2.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | anbi12d 473 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓))) |
11 | 3, 6, 10 | cbvex 1756 | . . . 4 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)) |
12 | 11 | exbii 1605 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)) |
13 | 12 | abbii 2293 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)} |
14 | df-opab 4067 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
15 | df-opab 4067 | . 2 ⊢ {⟨𝑥, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)} | |
16 | 13, 14, 15 | 3eqtr4i 2208 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 {cab 2163 ⟨cop 3597 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 |
This theorem is referenced by: cbvoprab3 5953 |
Copyright terms: Public domain | W3C validator |