ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab2 GIF version

Theorem cbvopab2 4134
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
Hypotheses
Ref Expression
cbvopab2.1 𝑧𝜑
cbvopab2.2 𝑦𝜓
cbvopab2.3 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cbvopab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . . . 6 𝑧 𝑤 = ⟨𝑥, 𝑦
2 cbvopab2.1 . . . . . 6 𝑧𝜑
31, 2nfan 1589 . . . . 5 𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
4 nfv 1552 . . . . . 6 𝑦 𝑤 = ⟨𝑥, 𝑧
5 cbvopab2.2 . . . . . 6 𝑦𝜓
64, 5nfan 1589 . . . . 5 𝑦(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)
7 opeq2 3834 . . . . . . 7 (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩)
87eqeq2d 2219 . . . . . 6 (𝑦 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑧⟩))
9 cbvopab2.3 . . . . . 6 (𝑦 = 𝑧 → (𝜑𝜓))
108, 9anbi12d 473 . . . . 5 (𝑦 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)))
113, 6, 10cbvex 1780 . . . 4 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓))
1211exbii 1629 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓))
1312abbii 2323 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)}
14 df-opab 4122 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
15 df-opab 4122 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)}
1613, 14, 153eqtr4i 2238 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wnf 1484  wex 1516  {cab 2193  cop 3646  {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122
This theorem is referenced by:  cbvoprab3  6044
  Copyright terms: Public domain W3C validator