ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 Unicode version

Theorem cossxp2 5189
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r  |-  ( ph  ->  R  C_  ( A  X.  B ) )
cossxp2.s  |-  ( ph  ->  S  C_  ( B  X.  C ) )
Assertion
Ref Expression
cossxp2  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5188 . 2  |-  ( S  o.  R )  C_  ( dom  R  X.  ran  S )
2 cossxp2.r . . . 4  |-  ( ph  ->  R  C_  ( A  X.  B ) )
3 dmxpss2 5098 . . . 4  |-  ( R 
C_  ( A  X.  B )  ->  dom  R 
C_  A )
42, 3syl 14 . . 3  |-  ( ph  ->  dom  R  C_  A
)
5 cossxp2.s . . . 4  |-  ( ph  ->  S  C_  ( B  X.  C ) )
6 rnxpss2 5099 . . . 4  |-  ( S 
C_  ( B  X.  C )  ->  ran  S 
C_  C )
75, 6syl 14 . . 3  |-  ( ph  ->  ran  S  C_  C
)
8 xpss12 4766 . . 3  |-  ( ( dom  R  C_  A  /\  ran  S  C_  C
)  ->  ( dom  R  X.  ran  S ) 
C_  ( A  X.  C ) )
94, 7, 8syl2anc 411 . 2  |-  ( ph  ->  ( dom  R  X.  ran  S )  C_  ( A  X.  C ) )
101, 9sstrid 3190 1  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3153    X. cxp 4657   dom cdm 4659   ran crn 4660    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator