ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 Unicode version

Theorem cossxp2 5127
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r  |-  ( ph  ->  R  C_  ( A  X.  B ) )
cossxp2.s  |-  ( ph  ->  S  C_  ( B  X.  C ) )
Assertion
Ref Expression
cossxp2  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5126 . 2  |-  ( S  o.  R )  C_  ( dom  R  X.  ran  S )
2 cossxp2.r . . . 4  |-  ( ph  ->  R  C_  ( A  X.  B ) )
3 dmxpss2 5036 . . . 4  |-  ( R 
C_  ( A  X.  B )  ->  dom  R 
C_  A )
42, 3syl 14 . . 3  |-  ( ph  ->  dom  R  C_  A
)
5 cossxp2.s . . . 4  |-  ( ph  ->  S  C_  ( B  X.  C ) )
6 rnxpss2 5037 . . . 4  |-  ( S 
C_  ( B  X.  C )  ->  ran  S 
C_  C )
75, 6syl 14 . . 3  |-  ( ph  ->  ran  S  C_  C
)
8 xpss12 4711 . . 3  |-  ( ( dom  R  C_  A  /\  ran  S  C_  C
)  ->  ( dom  R  X.  ran  S ) 
C_  ( A  X.  C ) )
94, 7, 8syl2anc 409 . 2  |-  ( ph  ->  ( dom  R  X.  ran  S )  C_  ( A  X.  C ) )
101, 9sstrid 3153 1  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3116    X. cxp 4602   dom cdm 4604   ran crn 4605    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator