ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 Unicode version

Theorem cossxp2 5154
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r  |-  ( ph  ->  R  C_  ( A  X.  B ) )
cossxp2.s  |-  ( ph  ->  S  C_  ( B  X.  C ) )
Assertion
Ref Expression
cossxp2  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5153 . 2  |-  ( S  o.  R )  C_  ( dom  R  X.  ran  S )
2 cossxp2.r . . . 4  |-  ( ph  ->  R  C_  ( A  X.  B ) )
3 dmxpss2 5063 . . . 4  |-  ( R 
C_  ( A  X.  B )  ->  dom  R 
C_  A )
42, 3syl 14 . . 3  |-  ( ph  ->  dom  R  C_  A
)
5 cossxp2.s . . . 4  |-  ( ph  ->  S  C_  ( B  X.  C ) )
6 rnxpss2 5064 . . . 4  |-  ( S 
C_  ( B  X.  C )  ->  ran  S 
C_  C )
75, 6syl 14 . . 3  |-  ( ph  ->  ran  S  C_  C
)
8 xpss12 4735 . . 3  |-  ( ( dom  R  C_  A  /\  ran  S  C_  C
)  ->  ( dom  R  X.  ran  S ) 
C_  ( A  X.  C ) )
94, 7, 8syl2anc 411 . 2  |-  ( ph  ->  ( dom  R  X.  ran  S )  C_  ( A  X.  C ) )
101, 9sstrid 3168 1  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3131    X. cxp 4626   dom cdm 4628   ran crn 4629    o. ccom 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator