ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 Unicode version

Theorem cossxp2 5134
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r  |-  ( ph  ->  R  C_  ( A  X.  B ) )
cossxp2.s  |-  ( ph  ->  S  C_  ( B  X.  C ) )
Assertion
Ref Expression
cossxp2  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5133 . 2  |-  ( S  o.  R )  C_  ( dom  R  X.  ran  S )
2 cossxp2.r . . . 4  |-  ( ph  ->  R  C_  ( A  X.  B ) )
3 dmxpss2 5043 . . . 4  |-  ( R 
C_  ( A  X.  B )  ->  dom  R 
C_  A )
42, 3syl 14 . . 3  |-  ( ph  ->  dom  R  C_  A
)
5 cossxp2.s . . . 4  |-  ( ph  ->  S  C_  ( B  X.  C ) )
6 rnxpss2 5044 . . . 4  |-  ( S 
C_  ( B  X.  C )  ->  ran  S 
C_  C )
75, 6syl 14 . . 3  |-  ( ph  ->  ran  S  C_  C
)
8 xpss12 4718 . . 3  |-  ( ( dom  R  C_  A  /\  ran  S  C_  C
)  ->  ( dom  R  X.  ran  S ) 
C_  ( A  X.  C ) )
94, 7, 8syl2anc 409 . 2  |-  ( ph  ->  ( dom  R  X.  ran  S )  C_  ( A  X.  C ) )
101, 9sstrid 3158 1  |-  ( ph  ->  ( S  o.  R
)  C_  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3121    X. cxp 4609   dom cdm 4611   ran crn 4612    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator