| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cossxp2 | GIF version | ||
| Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| cossxp2.r | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
| cossxp2.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) |
| Ref | Expression |
|---|---|
| cossxp2 | ⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossxp 5251 | . 2 ⊢ (𝑆 ∘ 𝑅) ⊆ (dom 𝑅 × ran 𝑆) | |
| 2 | cossxp2.r | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
| 3 | dmxpss2 5161 | . . . 4 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → dom 𝑅 ⊆ 𝐴) |
| 5 | cossxp2.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) | |
| 6 | rnxpss2 5162 | . . . 4 ⊢ (𝑆 ⊆ (𝐵 × 𝐶) → ran 𝑆 ⊆ 𝐶) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ 𝐶) |
| 8 | xpss12 4826 | . . 3 ⊢ ((dom 𝑅 ⊆ 𝐴 ∧ ran 𝑆 ⊆ 𝐶) → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶)) | |
| 9 | 4, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶)) |
| 10 | 1, 9 | sstrid 3235 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 × cxp 4717 dom cdm 4719 ran crn 4720 ∘ ccom 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |