ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 GIF version

Theorem cossxp2 5190
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r (𝜑𝑅 ⊆ (𝐴 × 𝐵))
cossxp2.s (𝜑𝑆 ⊆ (𝐵 × 𝐶))
Assertion
Ref Expression
cossxp2 (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5189 . 2 (𝑆𝑅) ⊆ (dom 𝑅 × ran 𝑆)
2 cossxp2.r . . . 4 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
3 dmxpss2 5099 . . . 4 (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)
42, 3syl 14 . . 3 (𝜑 → dom 𝑅𝐴)
5 cossxp2.s . . . 4 (𝜑𝑆 ⊆ (𝐵 × 𝐶))
6 rnxpss2 5100 . . . 4 (𝑆 ⊆ (𝐵 × 𝐶) → ran 𝑆𝐶)
75, 6syl 14 . . 3 (𝜑 → ran 𝑆𝐶)
8 xpss12 4767 . . 3 ((dom 𝑅𝐴 ∧ ran 𝑆𝐶) → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶))
94, 7, 8syl2anc 411 . 2 (𝜑 → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶))
101, 9sstrid 3191 1 (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3154   × cxp 4658  dom cdm 4660  ran crn 4661  ccom 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator