![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cossxp2 | GIF version |
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cossxp2.r | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
cossxp2.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) |
Ref | Expression |
---|---|
cossxp2 | ⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 5152 | . 2 ⊢ (𝑆 ∘ 𝑅) ⊆ (dom 𝑅 × ran 𝑆) | |
2 | cossxp2.r | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
3 | dmxpss2 5062 | . . . 4 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅 ⊆ 𝐴) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → dom 𝑅 ⊆ 𝐴) |
5 | cossxp2.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) | |
6 | rnxpss2 5063 | . . . 4 ⊢ (𝑆 ⊆ (𝐵 × 𝐶) → ran 𝑆 ⊆ 𝐶) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ 𝐶) |
8 | xpss12 4734 | . . 3 ⊢ ((dom 𝑅 ⊆ 𝐴 ∧ ran 𝑆 ⊆ 𝐶) → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶)) | |
9 | 4, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶)) |
10 | 1, 9 | sstrid 3167 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3130 × cxp 4625 dom cdm 4627 ran crn 4628 ∘ ccom 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |