ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 GIF version

Theorem cossxp2 5153
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r (𝜑𝑅 ⊆ (𝐴 × 𝐵))
cossxp2.s (𝜑𝑆 ⊆ (𝐵 × 𝐶))
Assertion
Ref Expression
cossxp2 (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5152 . 2 (𝑆𝑅) ⊆ (dom 𝑅 × ran 𝑆)
2 cossxp2.r . . . 4 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
3 dmxpss2 5062 . . . 4 (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)
42, 3syl 14 . . 3 (𝜑 → dom 𝑅𝐴)
5 cossxp2.s . . . 4 (𝜑𝑆 ⊆ (𝐵 × 𝐶))
6 rnxpss2 5063 . . . 4 (𝑆 ⊆ (𝐵 × 𝐶) → ran 𝑆𝐶)
75, 6syl 14 . . 3 (𝜑 → ran 𝑆𝐶)
8 xpss12 4734 . . 3 ((dom 𝑅𝐴 ∧ ran 𝑆𝐶) → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶))
94, 7, 8syl2anc 411 . 2 (𝜑 → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶))
101, 9sstrid 3167 1 (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3130   × cxp 4625  dom cdm 4627  ran crn 4628  ccom 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator