![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cossxp2 | GIF version |
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cossxp2.r | ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
cossxp2.s | ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) |
Ref | Expression |
---|---|
cossxp2 | ⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossxp 5188 | . 2 ⊢ (𝑆 ∘ 𝑅) ⊆ (dom 𝑅 × ran 𝑆) | |
2 | cossxp2.r | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) | |
3 | dmxpss2 5098 | . . . 4 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅 ⊆ 𝐴) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → dom 𝑅 ⊆ 𝐴) |
5 | cossxp2.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) | |
6 | rnxpss2 5099 | . . . 4 ⊢ (𝑆 ⊆ (𝐵 × 𝐶) → ran 𝑆 ⊆ 𝐶) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ 𝐶) |
8 | xpss12 4766 | . . 3 ⊢ ((dom 𝑅 ⊆ 𝐴 ∧ ran 𝑆 ⊆ 𝐶) → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶)) | |
9 | 4, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶)) |
10 | 1, 9 | sstrid 3190 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 × cxp 4657 dom cdm 4659 ran crn 4660 ∘ ccom 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |