ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp2 GIF version

Theorem cossxp2 5211
Description: The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
cossxp2.r (𝜑𝑅 ⊆ (𝐴 × 𝐵))
cossxp2.s (𝜑𝑆 ⊆ (𝐵 × 𝐶))
Assertion
Ref Expression
cossxp2 (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))

Proof of Theorem cossxp2
StepHypRef Expression
1 cossxp 5210 . 2 (𝑆𝑅) ⊆ (dom 𝑅 × ran 𝑆)
2 cossxp2.r . . . 4 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
3 dmxpss2 5120 . . . 4 (𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)
42, 3syl 14 . . 3 (𝜑 → dom 𝑅𝐴)
5 cossxp2.s . . . 4 (𝜑𝑆 ⊆ (𝐵 × 𝐶))
6 rnxpss2 5121 . . . 4 (𝑆 ⊆ (𝐵 × 𝐶) → ran 𝑆𝐶)
75, 6syl 14 . . 3 (𝜑 → ran 𝑆𝐶)
8 xpss12 4786 . . 3 ((dom 𝑅𝐴 ∧ ran 𝑆𝐶) → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶))
94, 7, 8syl2anc 411 . 2 (𝜑 → (dom 𝑅 × ran 𝑆) ⊆ (𝐴 × 𝐶))
101, 9sstrid 3205 1 (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3167   × cxp 4677  dom cdm 4679  ran crn 4680  ccom 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator