ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp Unicode version

Theorem cossxp 5133
Description: Composition as a subset of the cross product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
cossxp  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )

Proof of Theorem cossxp
StepHypRef Expression
1 relco 5109 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5131 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 5 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 4880 . . 3  |-  dom  ( A  o.  B )  C_ 
dom  B
5 rncoss 4881 . . 3  |-  ran  ( A  o.  B )  C_ 
ran  A
6 xpss12 4718 . . 3  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  ran  ( A  o.  B )  C_  ran  A )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  C_  ( dom  B  X.  ran  A ) )
74, 5, 6mp2an 424 . 2  |-  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  C_  ( dom  B  X.  ran  A )
83, 7sstri 3156 1  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )
Colors of variables: wff set class
Syntax hints:    C_ wss 3121    X. cxp 4609   dom cdm 4611   ran crn 4612    o. ccom 4615   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622
This theorem is referenced by:  cossxp2  5134  cocnvss  5136  coexg  5155  tposssxp  6228
  Copyright terms: Public domain W3C validator