ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp Unicode version

Theorem cossxp 5250
Description: Composition as a subset of the cross product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
cossxp  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )

Proof of Theorem cossxp
StepHypRef Expression
1 relco 5226 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5248 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 5 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 4993 . . 3  |-  dom  ( A  o.  B )  C_ 
dom  B
5 rncoss 4994 . . 3  |-  ran  ( A  o.  B )  C_ 
ran  A
6 xpss12 4825 . . 3  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  ran  ( A  o.  B )  C_  ran  A )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  C_  ( dom  B  X.  ran  A ) )
74, 5, 6mp2an 426 . 2  |-  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  C_  ( dom  B  X.  ran  A )
83, 7sstri 3233 1  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )
Colors of variables: wff set class
Syntax hints:    C_ wss 3197    X. cxp 4716   dom cdm 4718   ran crn 4719    o. ccom 4722   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729
This theorem is referenced by:  cossxp2  5251  cocnvss  5253  coexg  5272  tposssxp  6393
  Copyright terms: Public domain W3C validator