ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cossxp Unicode version

Theorem cossxp 5214
Description: Composition as a subset of the cross product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
cossxp  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )

Proof of Theorem cossxp
StepHypRef Expression
1 relco 5190 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5212 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 5 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 4957 . . 3  |-  dom  ( A  o.  B )  C_ 
dom  B
5 rncoss 4958 . . 3  |-  ran  ( A  o.  B )  C_ 
ran  A
6 xpss12 4790 . . 3  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  ran  ( A  o.  B )  C_  ran  A )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  C_  ( dom  B  X.  ran  A ) )
74, 5, 6mp2an 426 . 2  |-  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  C_  ( dom  B  X.  ran  A )
83, 7sstri 3206 1  |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )
Colors of variables: wff set class
Syntax hints:    C_ wss 3170    X. cxp 4681   dom cdm 4683   ran crn 4684    o. ccom 4687   Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694
This theorem is referenced by:  cossxp2  5215  cocnvss  5217  coexg  5236  tposssxp  6348
  Copyright terms: Public domain W3C validator