![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 |
![]() ![]() ![]() ![]() |
sstrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sstrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sstrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sstrd 3180 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: cossxp2 5170 fimacnv 5666 smores2 6320 f1imaen2g 6820 phplem4dom 6891 isinfinf 6926 fidcenumlemrk 6984 casef 7118 genipv 7539 fzossnn0 10207 seq3split 10512 1arith 12402 ctinf 12484 nninfdclemcl 12502 nninfdclemp1 12504 mhmima 12958 tgcl 14041 epttop 14067 ntrin 14101 cnconst2 14210 cnrest2 14213 cnptopresti 14215 cnptoprest2 14217 hmeores 14292 blin2 14409 ivthdec 14599 limcdifap 14608 limcresi 14612 dvfgg 14634 dvcnp2cntop 14640 dvaddxxbr 14642 reeff1olem 14669 |
Copyright terms: Public domain | W3C validator |