ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid Unicode version

Theorem sstrid 3195
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1  |-  A  C_  B
sstrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
sstrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3  |-  A  C_  B
21a1i 9 . 2  |-  ( ph  ->  A  C_  B )
3 sstrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3sstrd 3194 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  cossxp2  5194  fimacnv  5694  smores2  6361  f1imaen2g  6861  phplem4dom  6932  isinfinf  6967  fidcenumlemrk  7029  casef  7163  genipv  7593  fzossnn0  10268  seq3split  10597  1arith  12561  ctinf  12672  nninfdclemcl  12690  nninfdclemp1  12692  mhmima  13193  znleval  14285  tgcl  14384  epttop  14410  ntrin  14444  cnconst2  14553  cnrest2  14556  cnptopresti  14558  cnptoprest2  14560  hmeores  14635  blin2  14752  ivthdec  14964  limcdifap  14982  limcresi  14986  dvfgg  15008  dvcnp2cntop  15019  dvaddxxbr  15021  reeff1olem  15091  domomsubct  15732
  Copyright terms: Public domain W3C validator