Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | |
sstrid.2 |
Ref | Expression |
---|---|
sstrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | sstrid.2 | . 2 | |
4 | 2, 3 | sstrd 3151 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: cossxp2 5126 fimacnv 5613 smores2 6258 f1imaen2g 6755 phplem4dom 6824 isinfinf 6859 fidcenumlemrk 6915 casef 7049 genipv 7446 fzossnn0 10106 seq3split 10410 1arith 12293 ctinf 12359 nninfdclemcl 12377 nninfdclemp1 12379 tgcl 12664 epttop 12690 ntrin 12724 cnconst2 12833 cnrest2 12836 cnptopresti 12838 cnptoprest2 12840 hmeores 12915 blin2 13032 ivthdec 13222 limcdifap 13231 limcresi 13235 dvfgg 13257 dvcnp2cntop 13263 dvaddxxbr 13265 reeff1olem 13292 |
Copyright terms: Public domain | W3C validator |