| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 |
|
| sstrid.2 |
|
| Ref | Expression |
|---|---|
| sstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sstrid.2 |
. 2
| |
| 4 | 2, 3 | sstrd 3194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: cossxp2 5194 fimacnv 5694 smores2 6361 f1imaen2g 6861 phplem4dom 6932 isinfinf 6967 fidcenumlemrk 7029 casef 7163 genipv 7595 fzossnn0 10270 seq3split 10599 1arith 12563 ctinf 12674 nninfdclemcl 12692 nninfdclemp1 12694 mhmima 13195 znleval 14287 tgcl 14408 epttop 14434 ntrin 14468 cnconst2 14577 cnrest2 14580 cnptopresti 14582 cnptoprest2 14584 hmeores 14659 blin2 14776 ivthdec 14988 limcdifap 15006 limcresi 15010 dvfgg 15032 dvcnp2cntop 15043 dvaddxxbr 15045 reeff1olem 15115 domomsubct 15756 |
| Copyright terms: Public domain | W3C validator |