| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 |
|
| sstrid.2 |
|
| Ref | Expression |
|---|---|
| sstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sstrid.2 |
. 2
| |
| 4 | 2, 3 | sstrd 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: cossxp2 5206 fimacnv 5709 smores2 6380 f1imaen2g 6885 phplem4dom 6959 isinfinf 6994 fidcenumlemrk 7056 casef 7190 genipv 7622 fzossnn0 10299 seq3split 10633 1arith 12690 ctinf 12801 nninfdclemcl 12819 nninfdclemp1 12821 mhmima 13323 znleval 14415 tgcl 14536 epttop 14562 ntrin 14596 cnconst2 14705 cnrest2 14708 cnptopresti 14710 cnptoprest2 14712 hmeores 14787 blin2 14904 ivthdec 15116 limcdifap 15134 limcresi 15138 dvfgg 15160 dvcnp2cntop 15171 dvaddxxbr 15173 reeff1olem 15243 domomsubct 15938 |
| Copyright terms: Public domain | W3C validator |