| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 |
|
| sstrid.2 |
|
| Ref | Expression |
|---|---|
| sstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sstrid.2 |
. 2
| |
| 4 | 2, 3 | sstrd 3194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: cossxp2 5194 fimacnv 5694 smores2 6361 f1imaen2g 6861 phplem4dom 6932 isinfinf 6967 fidcenumlemrk 7029 casef 7163 genipv 7593 fzossnn0 10268 seq3split 10597 1arith 12561 ctinf 12672 nninfdclemcl 12690 nninfdclemp1 12692 mhmima 13193 znleval 14285 tgcl 14384 epttop 14410 ntrin 14444 cnconst2 14553 cnrest2 14556 cnptopresti 14558 cnptoprest2 14560 hmeores 14635 blin2 14752 ivthdec 14964 limcdifap 14982 limcresi 14986 dvfgg 15008 dvcnp2cntop 15019 dvaddxxbr 15021 reeff1olem 15091 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |