ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid Unicode version

Theorem sstrid 3181
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1  |-  A  C_  B
sstrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
sstrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3  |-  A  C_  B
21a1i 9 . 2  |-  ( ph  ->  A  C_  B )
3 sstrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3sstrd 3180 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  cossxp2  5170  fimacnv  5666  smores2  6320  f1imaen2g  6820  phplem4dom  6891  isinfinf  6926  fidcenumlemrk  6984  casef  7118  genipv  7539  fzossnn0  10207  seq3split  10512  1arith  12402  ctinf  12484  nninfdclemcl  12502  nninfdclemp1  12504  mhmima  12958  tgcl  14041  epttop  14067  ntrin  14101  cnconst2  14210  cnrest2  14213  cnptopresti  14215  cnptoprest2  14217  hmeores  14292  blin2  14409  ivthdec  14599  limcdifap  14608  limcresi  14612  dvfgg  14634  dvcnp2cntop  14640  dvaddxxbr  14642  reeff1olem  14669
  Copyright terms: Public domain W3C validator