| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 |
|
| sstrid.2 |
|
| Ref | Expression |
|---|---|
| sstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sstrid.2 |
. 2
| |
| 4 | 2, 3 | sstrd 3211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: cossxp2 5225 fimacnv 5732 smores2 6403 f1imaen2g 6908 phplem4dom 6984 isinfinf 7020 fidcenumlemrk 7082 casef 7216 genipv 7657 fzossnn0 10334 seq3split 10670 1arith 12805 ctinf 12916 nninfdclemcl 12934 nninfdclemp1 12936 mhmima 13438 znleval 14530 tgcl 14651 epttop 14677 ntrin 14711 cnconst2 14820 cnrest2 14823 cnptopresti 14825 cnptoprest2 14827 hmeores 14902 blin2 15019 ivthdec 15231 limcdifap 15249 limcresi 15253 dvfgg 15275 dvcnp2cntop 15286 dvaddxxbr 15288 reeff1olem 15358 domomsubct 16140 |
| Copyright terms: Public domain | W3C validator |