ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid Unicode version

Theorem sstrid 3164
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1  |-  A  C_  B
sstrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
sstrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3  |-  A  C_  B
21a1i 9 . 2  |-  ( ph  ->  A  C_  B )
3 sstrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3sstrd 3163 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by:  cossxp2  5144  fimacnv  5637  smores2  6285  f1imaen2g  6783  phplem4dom  6852  isinfinf  6887  fidcenumlemrk  6943  casef  7077  genipv  7483  fzossnn0  10143  seq3split  10447  1arith  12330  ctinf  12396  nninfdclemcl  12414  nninfdclemp1  12416  mhmima  12735  tgcl  13115  epttop  13141  ntrin  13175  cnconst2  13284  cnrest2  13287  cnptopresti  13289  cnptoprest2  13291  hmeores  13366  blin2  13483  ivthdec  13673  limcdifap  13682  limcresi  13686  dvfgg  13708  dvcnp2cntop  13714  dvaddxxbr  13716  reeff1olem  13743
  Copyright terms: Public domain W3C validator