| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 |
|
| sstrid.2 |
|
| Ref | Expression |
|---|---|
| sstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sstrid.2 |
. 2
| |
| 4 | 2, 3 | sstrd 3234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: cossxp2 5252 fimacnv 5764 smores2 6440 f1imaen2g 6945 phplem4dom 7023 isinfinf 7059 fidcenumlemrk 7121 casef 7255 genipv 7696 fzossnn0 10373 seq3split 10710 1arith 12890 ctinf 13001 nninfdclemcl 13019 nninfdclemp1 13021 mhmima 13524 znleval 14617 tgcl 14738 epttop 14764 ntrin 14798 cnconst2 14907 cnrest2 14910 cnptopresti 14912 cnptoprest2 14914 hmeores 14989 blin2 15106 ivthdec 15318 limcdifap 15336 limcresi 15340 dvfgg 15362 dvcnp2cntop 15373 dvaddxxbr 15375 reeff1olem 15445 domomsubct 16367 |
| Copyright terms: Public domain | W3C validator |