| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 |
|
| sstrid.2 |
|
| Ref | Expression |
|---|---|
| sstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sstrid.2 |
. 2
| |
| 4 | 2, 3 | sstrd 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: cossxp2 5207 fimacnv 5711 smores2 6382 f1imaen2g 6887 phplem4dom 6961 isinfinf 6996 fidcenumlemrk 7058 casef 7192 genipv 7624 fzossnn0 10301 seq3split 10635 1arith 12723 ctinf 12834 nninfdclemcl 12852 nninfdclemp1 12854 mhmima 13356 znleval 14448 tgcl 14569 epttop 14595 ntrin 14629 cnconst2 14738 cnrest2 14741 cnptopresti 14743 cnptoprest2 14745 hmeores 14820 blin2 14937 ivthdec 15149 limcdifap 15167 limcresi 15171 dvfgg 15193 dvcnp2cntop 15204 dvaddxxbr 15206 reeff1olem 15276 domomsubct 15975 |
| Copyright terms: Public domain | W3C validator |