ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid Unicode version

Theorem sstrid 3204
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1  |-  A  C_  B
sstrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
sstrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3  |-  A  C_  B
21a1i 9 . 2  |-  ( ph  ->  A  C_  B )
3 sstrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3sstrd 3203 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  cossxp2  5207  fimacnv  5711  smores2  6382  f1imaen2g  6887  phplem4dom  6961  isinfinf  6996  fidcenumlemrk  7058  casef  7192  genipv  7624  fzossnn0  10301  seq3split  10635  1arith  12723  ctinf  12834  nninfdclemcl  12852  nninfdclemp1  12854  mhmima  13356  znleval  14448  tgcl  14569  epttop  14595  ntrin  14629  cnconst2  14738  cnrest2  14741  cnptopresti  14743  cnptoprest2  14745  hmeores  14820  blin2  14937  ivthdec  15149  limcdifap  15167  limcresi  15171  dvfgg  15193  dvcnp2cntop  15204  dvaddxxbr  15206  reeff1olem  15276  domomsubct  15975
  Copyright terms: Public domain W3C validator