ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrid Unicode version

Theorem sstrid 3191
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
Hypotheses
Ref Expression
sstrid.1  |-  A  C_  B
sstrid.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
sstrid  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrid
StepHypRef Expression
1 sstrid.1 . . 3  |-  A  C_  B
21a1i 9 . 2  |-  ( ph  ->  A  C_  B )
3 sstrid.2 . 2  |-  ( ph  ->  B  C_  C )
42, 3sstrd 3190 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  cossxp2  5190  fimacnv  5688  smores2  6349  f1imaen2g  6849  phplem4dom  6920  isinfinf  6955  fidcenumlemrk  7015  casef  7149  genipv  7571  fzossnn0  10245  seq3split  10562  1arith  12508  ctinf  12590  nninfdclemcl  12608  nninfdclemp1  12610  mhmima  13066  znleval  14152  tgcl  14243  epttop  14269  ntrin  14303  cnconst2  14412  cnrest2  14415  cnptopresti  14417  cnptoprest2  14419  hmeores  14494  blin2  14611  ivthdec  14823  limcdifap  14841  limcresi  14845  dvfgg  14867  dvcnp2cntop  14878  dvaddxxbr  14880  reeff1olem  14947
  Copyright terms: Public domain W3C validator