Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrid | Unicode version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | |
sstrid.2 |
Ref | Expression |
---|---|
sstrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | sstrid.2 | . 2 | |
4 | 2, 3 | sstrd 3163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: cossxp2 5144 fimacnv 5637 smores2 6285 f1imaen2g 6783 phplem4dom 6852 isinfinf 6887 fidcenumlemrk 6943 casef 7077 genipv 7483 fzossnn0 10143 seq3split 10447 1arith 12330 ctinf 12396 nninfdclemcl 12414 nninfdclemp1 12416 mhmima 12735 tgcl 13115 epttop 13141 ntrin 13175 cnconst2 13284 cnrest2 13287 cnptopresti 13289 cnptoprest2 13291 hmeores 13366 blin2 13483 ivthdec 13673 limcdifap 13682 limcresi 13686 dvfgg 13708 dvcnp2cntop 13714 dvaddxxbr 13716 reeff1olem 13743 |
Copyright terms: Public domain | W3C validator |