ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmg Unicode version

Theorem eldmg 4806
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
Distinct variable groups:    y, A    y, B
Allowed substitution hint:    V( y)

Proof of Theorem eldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq1 3992 . . 3  |-  ( x  =  A  ->  (
x B y  <->  A B
y ) )
21exbidv 1818 . 2  |-  ( x  =  A  ->  ( E. y  x B
y  <->  E. y  A B y ) )
3 df-dm 4621 . 2  |-  dom  B  =  { x  |  E. y  x B y }
42, 3elab2g 2877 1  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   class class class wbr 3989   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  eldm2g  4807  eldm  4808  breldmg  4817  releldmb  4848  funeu  5223  fneu  5302  ndmfvg  5527  erref  6533  ecdmn0m  6555  shftdm  10786  dvcnp2cntop  13457
  Copyright terms: Public domain W3C validator