ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmg Unicode version

Theorem eldmg 4780
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
Distinct variable groups:    y, A    y, B
Allowed substitution hint:    V( y)

Proof of Theorem eldmg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq1 3968 . . 3  |-  ( x  =  A  ->  (
x B y  <->  A B
y ) )
21exbidv 1805 . 2  |-  ( x  =  A  ->  ( E. y  x B
y  <->  E. y  A B y ) )
3 df-dm 4595 . 2  |-  dom  B  =  { x  |  E. y  x B y }
42, 3elab2g 2859 1  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   class class class wbr 3965   dom cdm 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-dm 4595
This theorem is referenced by:  eldm2g  4781  eldm  4782  breldmg  4791  releldmb  4822  funeu  5194  fneu  5273  ndmfvg  5498  erref  6497  ecdmn0m  6519  shftdm  10715  dvcnp2cntop  13034
  Copyright terms: Public domain W3C validator