Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldmg | Unicode version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldmg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3968 | . . 3 | |
2 | 1 | exbidv 1805 | . 2 |
3 | df-dm 4595 | . 2 | |
4 | 2, 3 | elab2g 2859 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wex 1472 wcel 2128 class class class wbr 3965 cdm 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-dm 4595 |
This theorem is referenced by: eldm2g 4781 eldm 4782 breldmg 4791 releldmb 4822 funeu 5194 fneu 5273 ndmfvg 5498 erref 6497 ecdmn0m 6519 shftdm 10715 dvcnp2cntop 13034 |
Copyright terms: Public domain | W3C validator |