ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfv2g GIF version

Theorem csbfv2g 5642
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12g 5641 . 2 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2 csbconstg 3118 . . 3 (𝐴𝐶𝐴 / 𝑥𝐹 = 𝐹)
32fveq1d 5605 . 2 (𝐴𝐶 → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐹𝐴 / 𝑥𝐵))
41, 3eqtrd 2242 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  csb 3104  cfv 5294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-iota 5254  df-fv 5302
This theorem is referenced by:  csbfvg  5643  fsumabs  11942  fprodabs  12093  ixpsnbasval  14395
  Copyright terms: Public domain W3C validator