ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfv2g GIF version

Theorem csbfv2g 5581
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12g 5580 . 2 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2 csbconstg 3090 . . 3 (𝐴𝐶𝐴 / 𝑥𝐹 = 𝐹)
32fveq1d 5544 . 2 (𝐴𝐶 → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐹𝐴 / 𝑥𝐵))
41, 3eqtrd 2222 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  csb 3076  cfv 5242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2758  df-sbc 2982  df-csb 3077  df-un 3153  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-br 4026  df-iota 5203  df-fv 5250
This theorem is referenced by:  csbfvg  5582  fsumabs  11582  fprodabs  11733  ixpsnbasval  13926
  Copyright terms: Public domain W3C validator