ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodabs Unicode version

Theorem fprodabs 12122
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1  |-  Z  =  ( ZZ>= `  M )
fprodabs.2  |-  ( ph  ->  N  e.  Z )
fprodabs.3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
Assertion
Ref Expression
fprodabs  |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) )
Distinct variable groups:    k, M    k, N    k, Z    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fprodabs
Dummy variables  a  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3  |-  ( ph  ->  N  e.  Z )
2 fprodabs.1 . . 3  |-  Z  =  ( ZZ>= `  M )
31, 2eleqtrdi 2322 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 oveq2 6008 . . . . . . 7  |-  ( a  =  M  ->  ( M ... a )  =  ( M ... M
) )
54prodeq1d 12070 . . . . . 6  |-  ( a  =  M  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... M ) A )
65fveq2d 5630 . . . . 5  |-  ( a  =  M  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... M
) A ) )
74prodeq1d 12070 . . . . 5  |-  ( a  =  M  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... M ) ( abs `  A ) )
86, 7eqeq12d 2244 . . . 4  |-  ( a  =  M  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A
) ) )
98imbi2d 230 . . 3  |-  ( a  =  M  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A
) ) ) )
10 oveq2 6008 . . . . . . 7  |-  ( a  =  n  ->  ( M ... a )  =  ( M ... n
) )
1110prodeq1d 12070 . . . . . 6  |-  ( a  =  n  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... n ) A )
1211fveq2d 5630 . . . . 5  |-  ( a  =  n  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... n
) A ) )
1310prodeq1d 12070 . . . . 5  |-  ( a  =  n  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... n ) ( abs `  A ) )
1412, 13eqeq12d 2244 . . . 4  |-  ( a  =  n  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) ) )
1514imbi2d 230 . . 3  |-  ( a  =  n  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) ) ) )
16 oveq2 6008 . . . . . . 7  |-  ( a  =  ( n  + 
1 )  ->  ( M ... a )  =  ( M ... (
n  +  1 ) ) )
1716prodeq1d 12070 . . . . . 6  |-  ( a  =  ( n  + 
1 )  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )
1817fveq2d 5630 . . . . 5  |-  ( a  =  ( n  + 
1 )  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... (
n  +  1 ) ) A ) )
1916prodeq1d 12070 . . . . 5  |-  ( a  =  ( n  + 
1 )  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... ( n  +  1
) ) ( abs `  A ) )
2018, 19eqeq12d 2244 . . . 4  |-  ( a  =  ( n  + 
1 )  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... ( n  +  1
) ) A )  =  prod_ k  e.  ( M ... ( n  +  1 ) ) ( abs `  A
) ) )
2120imbi2d 230 . . 3  |-  ( a  =  ( n  + 
1 )  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1
) ) A )  =  prod_ k  e.  ( M ... ( n  +  1 ) ) ( abs `  A
) ) ) )
22 oveq2 6008 . . . . . . 7  |-  ( a  =  N  ->  ( M ... a )  =  ( M ... N
) )
2322prodeq1d 12070 . . . . . 6  |-  ( a  =  N  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... N ) A )
2423fveq2d 5630 . . . . 5  |-  ( a  =  N  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... N
) A ) )
2522prodeq1d 12070 . . . . 5  |-  ( a  =  N  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... N ) ( abs `  A ) )
2624, 25eqeq12d 2244 . . . 4  |-  ( a  =  N  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) ) )
2726imbi2d 230 . . 3  |-  ( a  =  N  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) ) ) )
28 csbfv2g 5667 . . . . . 6  |-  ( M  e.  ZZ  ->  [_ M  /  k ]_ ( abs `  A )  =  ( abs `  [_ M  /  k ]_ A
) )
2928adantl 277 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  [_ M  /  k ]_ ( abs `  A )  =  ( abs `  [_ M  /  k ]_ A
) )
30 fzsn 10258 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
3130adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( M ... M )  =  { M } )
3231prodeq1d 12070 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) ( abs `  A
)  =  prod_ k  e.  { M }  ( abs `  A ) )
33 simpr 110 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  M  e.  ZZ )
34 uzid 9732 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
3534, 2eleqtrrdi 2323 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  Z )
36 fprodabs.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
3736ralrimiva 2603 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  Z  A  e.  CC )
38 nfcsb1v 3157 . . . . . . . . . . . . . 14  |-  F/_ k [_ M  /  k ]_ A
3938nfel1 2383 . . . . . . . . . . . . 13  |-  F/ k
[_ M  /  k ]_ A  e.  CC
40 csbeq1a 3133 . . . . . . . . . . . . . 14  |-  ( k  =  M  ->  A  =  [_ M  /  k ]_ A )
4140eleq1d 2298 . . . . . . . . . . . . 13  |-  ( k  =  M  ->  ( A  e.  CC  <->  [_ M  / 
k ]_ A  e.  CC ) )
4239, 41rspc 2901 . . . . . . . . . . . 12  |-  ( M  e.  Z  ->  ( A. k  e.  Z  A  e.  CC  ->  [_ M  /  k ]_ A  e.  CC )
)
4337, 42mpan9 281 . . . . . . . . . . 11  |-  ( (
ph  /\  M  e.  Z )  ->  [_ M  /  k ]_ A  e.  CC )
4435, 43sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  ZZ )  ->  [_ M  /  k ]_ A  e.  CC )
4544abscld 11687 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  [_ M  /  k ]_ A )  e.  RR )
4645recnd 8171 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  [_ M  /  k ]_ A )  e.  CC )
4729, 46eqeltrd 2306 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  [_ M  /  k ]_ ( abs `  A )  e.  CC )
48 prodsns 12109 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ ( abs `  A )  e.  CC )  ->  prod_ k  e.  { M }  ( abs `  A
)  =  [_ M  /  k ]_ ( abs `  A ) )
4933, 47, 48syl2anc 411 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  { M }  ( abs `  A )  = 
[_ M  /  k ]_ ( abs `  A
) )
5032, 49eqtrd 2262 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) ( abs `  A
)  =  [_ M  /  k ]_ ( abs `  A ) )
5130prodeq1d 12070 . . . . . . . 8  |-  ( M  e.  ZZ  ->  prod_ k  e.  ( M ... M ) A  = 
prod_ k  e.  { M } A )
5251adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) A  =  prod_ k  e.  { M } A )
53 prodsns 12109 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ A  e.  CC )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A
)
5433, 44, 53syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A )
5552, 54eqtrd 2262 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) A  =  [_ M  /  k ]_ A
)
5655fveq2d 5630 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  ( abs `  [_ M  /  k ]_ A
) )
5729, 50, 563eqtr4rd 2273 . . . 4  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A ) )
5857expcom 116 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A
) ) )
59 simp3 1023 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A ) )
60 peano2uz 9774 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
61 csbfv2g 5667 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( ZZ>= `  M
)  ->  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
)  =  ( abs `  [_ ( n  + 
1 )  /  k ]_ A ) )
6260, 61syl 14 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
)  =  ( abs `  [_ ( n  + 
1 )  /  k ]_ A ) )
6362eqcomd 2235 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( abs ` 
[_ ( n  + 
1 )  /  k ]_ A )  =  [_ ( n  +  1
)  /  k ]_ ( abs `  A ) )
64633ad2ant2 1043 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  [_ ( n  +  1 )  / 
k ]_ A )  = 
[_ ( n  + 
1 )  /  k ]_ ( abs `  A
) )
6559, 64oveq12d 6018 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  (
( abs `  prod_ k  e.  ( M ... n ) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) )  =  (
prod_ k  e.  ( M ... n ) ( abs `  A )  x.  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
) ) )
66 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
67 elfzuz 10213 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( n  +  1
) )  ->  k  e.  ( ZZ>= `  M )
)
6867, 2eleqtrrdi 2323 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... ( n  +  1
) )  ->  k  e.  Z )
6968, 36sylan2 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  A  e.  CC )
7069adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  A  e.  CC )
7166, 70fprodp1s 12108 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  prod_ k  e.  ( M ... (
n  +  1 ) ) A  =  (
prod_ k  e.  ( M ... n ) A  x.  [_ ( n  +  1 )  / 
k ]_ A ) )
7271fveq2d 5630 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  ( abs `  ( prod_ k  e.  ( M ... n ) A  x.  [_ (
n  +  1 )  /  k ]_ A
) ) )
73 eluzel2 9723 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7473adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
75 eluzelz 9727 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
7675adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ZZ )
7774, 76fzfigd 10648 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( M ... n )  e.  Fin )
78 elfzuz 10213 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
7978, 2eleqtrrdi 2323 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
8079, 36sylan2 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M ... n ) )  ->  A  e.  CC )
8180adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... n ) )  ->  A  e.  CC )
8277, 81fprodcl 12113 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  prod_ k  e.  ( M ... n
) A  e.  CC )
8360, 2eleqtrrdi 2323 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
84 nfcsb1v 3157 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( n  +  1 )  /  k ]_ A
8584nfel1 2383 . . . . . . . . . . . . 13  |-  F/ k
[_ ( n  + 
1 )  /  k ]_ A  e.  CC
86 csbeq1a 3133 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  A  =  [_ ( n  + 
1 )  /  k ]_ A )
8786eleq1d 2298 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  ( A  e.  CC  <->  [_ ( n  +  1 )  / 
k ]_ A  e.  CC ) )
8885, 87rspc 2901 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  A  e.  CC  ->  [_ ( n  +  1 )  /  k ]_ A  e.  CC )
)
8937, 88mpan9 281 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  [_ (
n  +  1 )  /  k ]_ A  e.  CC )
9083, 89sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  [_ ( n  +  1 )  / 
k ]_ A  e.  CC )
9182, 90absmuld 11700 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( prod_ k  e.  ( M ... n ) A  x.  [_ (
n  +  1 )  /  k ]_ A
) )  =  ( ( abs `  prod_ k  e.  ( M ... n ) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) ) )
9272, 91eqtrd 2262 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  ( ( abs `  prod_ k  e.  ( M ... n
) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) ) )
93923adant3 1041 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1 ) ) A )  =  ( ( abs `  prod_ k  e.  ( M ... n ) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) ) )
9470abscld 11687 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  ( abs `  A )  e.  RR )
9594recnd 8171 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  ( abs `  A )  e.  CC )
9666, 95fprodp1s 12108 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  prod_ k  e.  ( M ... (
n  +  1 ) ) ( abs `  A
)  =  ( prod_
k  e.  ( M ... n ) ( abs `  A )  x.  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
) ) )
97963adant3 1041 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  prod_ k  e.  ( M ... ( n  +  1
) ) ( abs `  A )  =  (
prod_ k  e.  ( M ... n ) ( abs `  A )  x.  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
) ) )
9865, 93, 973eqtr4d 2272 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1 ) ) A )  =  prod_ k  e.  ( M ... ( n  +  1
) ) ( abs `  A ) )
99983exp 1226 . . . . 5  |-  ( ph  ->  ( n  e.  (
ZZ>= `  M )  -> 
( ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  prod_ k  e.  ( M ... (
n  +  1 ) ) ( abs `  A
) ) ) )
10099com12 30 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  prod_ k  e.  ( M ... (
n  +  1 ) ) ( abs `  A
) ) ) )
101100a2d 26 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1
) ) A )  =  prod_ k  e.  ( M ... ( n  +  1 ) ) ( abs `  A
) ) ) )
1029, 15, 21, 27, 58, 101uzind4 9779 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) ) )
1033, 102mpcom 36 1  |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   [_csb 3124   {csn 3666   ` cfv 5317  (class class class)co 6000   CCcc 7993   1c1 7996    + caddc 7998    x. cmul 8000   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200   abscabs 11503   prod_cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator