ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodabs Unicode version

Theorem fprodabs 11608
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1  |-  Z  =  ( ZZ>= `  M )
fprodabs.2  |-  ( ph  ->  N  e.  Z )
fprodabs.3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
Assertion
Ref Expression
fprodabs  |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) )
Distinct variable groups:    k, M    k, N    k, Z    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fprodabs
Dummy variables  a  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3  |-  ( ph  ->  N  e.  Z )
2 fprodabs.1 . . 3  |-  Z  =  ( ZZ>= `  M )
31, 2eleqtrdi 2270 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 oveq2 5877 . . . . . . 7  |-  ( a  =  M  ->  ( M ... a )  =  ( M ... M
) )
54prodeq1d 11556 . . . . . 6  |-  ( a  =  M  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... M ) A )
65fveq2d 5515 . . . . 5  |-  ( a  =  M  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... M
) A ) )
74prodeq1d 11556 . . . . 5  |-  ( a  =  M  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... M ) ( abs `  A ) )
86, 7eqeq12d 2192 . . . 4  |-  ( a  =  M  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A
) ) )
98imbi2d 230 . . 3  |-  ( a  =  M  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A
) ) ) )
10 oveq2 5877 . . . . . . 7  |-  ( a  =  n  ->  ( M ... a )  =  ( M ... n
) )
1110prodeq1d 11556 . . . . . 6  |-  ( a  =  n  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... n ) A )
1211fveq2d 5515 . . . . 5  |-  ( a  =  n  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... n
) A ) )
1310prodeq1d 11556 . . . . 5  |-  ( a  =  n  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... n ) ( abs `  A ) )
1412, 13eqeq12d 2192 . . . 4  |-  ( a  =  n  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) ) )
1514imbi2d 230 . . 3  |-  ( a  =  n  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) ) ) )
16 oveq2 5877 . . . . . . 7  |-  ( a  =  ( n  + 
1 )  ->  ( M ... a )  =  ( M ... (
n  +  1 ) ) )
1716prodeq1d 11556 . . . . . 6  |-  ( a  =  ( n  + 
1 )  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )
1817fveq2d 5515 . . . . 5  |-  ( a  =  ( n  + 
1 )  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... (
n  +  1 ) ) A ) )
1916prodeq1d 11556 . . . . 5  |-  ( a  =  ( n  + 
1 )  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... ( n  +  1
) ) ( abs `  A ) )
2018, 19eqeq12d 2192 . . . 4  |-  ( a  =  ( n  + 
1 )  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... ( n  +  1
) ) A )  =  prod_ k  e.  ( M ... ( n  +  1 ) ) ( abs `  A
) ) )
2120imbi2d 230 . . 3  |-  ( a  =  ( n  + 
1 )  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1
) ) A )  =  prod_ k  e.  ( M ... ( n  +  1 ) ) ( abs `  A
) ) ) )
22 oveq2 5877 . . . . . . 7  |-  ( a  =  N  ->  ( M ... a )  =  ( M ... N
) )
2322prodeq1d 11556 . . . . . 6  |-  ( a  =  N  ->  prod_ k  e.  ( M ... a ) A  = 
prod_ k  e.  ( M ... N ) A )
2423fveq2d 5515 . . . . 5  |-  ( a  =  N  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  ( abs `  prod_ k  e.  ( M ... N
) A ) )
2522prodeq1d 11556 . . . . 5  |-  ( a  =  N  ->  prod_ k  e.  ( M ... a ) ( abs `  A )  =  prod_ k  e.  ( M ... N ) ( abs `  A ) )
2624, 25eqeq12d 2192 . . . 4  |-  ( a  =  N  ->  (
( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A
)  <->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) ) )
2726imbi2d 230 . . 3  |-  ( a  =  N  ->  (
( ph  ->  ( abs `  prod_ k  e.  ( M ... a ) A )  =  prod_ k  e.  ( M ... a ) ( abs `  A ) )  <->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) ) ) )
28 csbfv2g 5548 . . . . . 6  |-  ( M  e.  ZZ  ->  [_ M  /  k ]_ ( abs `  A )  =  ( abs `  [_ M  /  k ]_ A
) )
2928adantl 277 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  [_ M  /  k ]_ ( abs `  A )  =  ( abs `  [_ M  /  k ]_ A
) )
30 fzsn 10052 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
3130adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( M ... M )  =  { M } )
3231prodeq1d 11556 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) ( abs `  A
)  =  prod_ k  e.  { M }  ( abs `  A ) )
33 simpr 110 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  M  e.  ZZ )
34 uzid 9531 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
3534, 2eleqtrrdi 2271 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  Z )
36 fprodabs.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
3736ralrimiva 2550 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  Z  A  e.  CC )
38 nfcsb1v 3090 . . . . . . . . . . . . . 14  |-  F/_ k [_ M  /  k ]_ A
3938nfel1 2330 . . . . . . . . . . . . 13  |-  F/ k
[_ M  /  k ]_ A  e.  CC
40 csbeq1a 3066 . . . . . . . . . . . . . 14  |-  ( k  =  M  ->  A  =  [_ M  /  k ]_ A )
4140eleq1d 2246 . . . . . . . . . . . . 13  |-  ( k  =  M  ->  ( A  e.  CC  <->  [_ M  / 
k ]_ A  e.  CC ) )
4239, 41rspc 2835 . . . . . . . . . . . 12  |-  ( M  e.  Z  ->  ( A. k  e.  Z  A  e.  CC  ->  [_ M  /  k ]_ A  e.  CC )
)
4337, 42mpan9 281 . . . . . . . . . . 11  |-  ( (
ph  /\  M  e.  Z )  ->  [_ M  /  k ]_ A  e.  CC )
4435, 43sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  ZZ )  ->  [_ M  /  k ]_ A  e.  CC )
4544abscld 11174 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  [_ M  /  k ]_ A )  e.  RR )
4645recnd 7976 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  [_ M  /  k ]_ A )  e.  CC )
4729, 46eqeltrd 2254 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  [_ M  /  k ]_ ( abs `  A )  e.  CC )
48 prodsns 11595 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ ( abs `  A )  e.  CC )  ->  prod_ k  e.  { M }  ( abs `  A
)  =  [_ M  /  k ]_ ( abs `  A ) )
4933, 47, 48syl2anc 411 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  { M }  ( abs `  A )  = 
[_ M  /  k ]_ ( abs `  A
) )
5032, 49eqtrd 2210 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) ( abs `  A
)  =  [_ M  /  k ]_ ( abs `  A ) )
5130prodeq1d 11556 . . . . . . . 8  |-  ( M  e.  ZZ  ->  prod_ k  e.  ( M ... M ) A  = 
prod_ k  e.  { M } A )
5251adantl 277 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) A  =  prod_ k  e.  { M } A )
53 prodsns 11595 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ A  e.  CC )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A
)
5433, 44, 53syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  { M } A  =  [_ M  /  k ]_ A )
5552, 54eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  prod_ k  e.  ( M ... M
) A  =  [_ M  /  k ]_ A
)
5655fveq2d 5515 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  ( abs `  [_ M  /  k ]_ A
) )
5729, 50, 563eqtr4rd 2221 . . . 4  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A ) )
5857expcom 116 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... M ) A )  =  prod_ k  e.  ( M ... M ) ( abs `  A
) ) )
59 simp3 999 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A ) )
60 peano2uz 9572 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
61 csbfv2g 5548 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( ZZ>= `  M
)  ->  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
)  =  ( abs `  [_ ( n  + 
1 )  /  k ]_ A ) )
6260, 61syl 14 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
)  =  ( abs `  [_ ( n  + 
1 )  /  k ]_ A ) )
6362eqcomd 2183 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( abs ` 
[_ ( n  + 
1 )  /  k ]_ A )  =  [_ ( n  +  1
)  /  k ]_ ( abs `  A ) )
64633ad2ant2 1019 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  [_ ( n  +  1 )  / 
k ]_ A )  = 
[_ ( n  + 
1 )  /  k ]_ ( abs `  A
) )
6559, 64oveq12d 5887 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  (
( abs `  prod_ k  e.  ( M ... n ) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) )  =  (
prod_ k  e.  ( M ... n ) ( abs `  A )  x.  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
) ) )
66 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
67 elfzuz 10007 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( n  +  1
) )  ->  k  e.  ( ZZ>= `  M )
)
6867, 2eleqtrrdi 2271 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... ( n  +  1
) )  ->  k  e.  Z )
6968, 36sylan2 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  A  e.  CC )
7069adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  A  e.  CC )
7166, 70fprodp1s 11594 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  prod_ k  e.  ( M ... (
n  +  1 ) ) A  =  (
prod_ k  e.  ( M ... n ) A  x.  [_ ( n  +  1 )  / 
k ]_ A ) )
7271fveq2d 5515 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  ( abs `  ( prod_ k  e.  ( M ... n ) A  x.  [_ (
n  +  1 )  /  k ]_ A
) ) )
73 eluzel2 9522 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7473adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
75 eluzelz 9526 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
7675adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ZZ )
7774, 76fzfigd 10417 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( M ... n )  e.  Fin )
78 elfzuz 10007 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
7978, 2eleqtrrdi 2271 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
8079, 36sylan2 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M ... n ) )  ->  A  e.  CC )
8180adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... n ) )  ->  A  e.  CC )
8277, 81fprodcl 11599 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  prod_ k  e.  ( M ... n
) A  e.  CC )
8360, 2eleqtrrdi 2271 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  Z )
84 nfcsb1v 3090 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( n  +  1 )  /  k ]_ A
8584nfel1 2330 . . . . . . . . . . . . 13  |-  F/ k
[_ ( n  + 
1 )  /  k ]_ A  e.  CC
86 csbeq1a 3066 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  A  =  [_ ( n  + 
1 )  /  k ]_ A )
8786eleq1d 2246 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  ( A  e.  CC  <->  [_ ( n  +  1 )  / 
k ]_ A  e.  CC ) )
8885, 87rspc 2835 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  A  e.  CC  ->  [_ ( n  +  1 )  /  k ]_ A  e.  CC )
)
8937, 88mpan9 281 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  [_ (
n  +  1 )  /  k ]_ A  e.  CC )
9083, 89sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  [_ ( n  +  1 )  / 
k ]_ A  e.  CC )
9182, 90absmuld 11187 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( prod_ k  e.  ( M ... n ) A  x.  [_ (
n  +  1 )  /  k ]_ A
) )  =  ( ( abs `  prod_ k  e.  ( M ... n ) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) ) )
9272, 91eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  ( ( abs `  prod_ k  e.  ( M ... n
) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) ) )
93923adant3 1017 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1 ) ) A )  =  ( ( abs `  prod_ k  e.  ( M ... n ) A )  x.  ( abs `  [_ (
n  +  1 )  /  k ]_ A
) ) )
9470abscld 11174 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  ( abs `  A )  e.  RR )
9594recnd 7976 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( n  +  1 ) ) )  ->  ( abs `  A )  e.  CC )
9666, 95fprodp1s 11594 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  prod_ k  e.  ( M ... (
n  +  1 ) ) ( abs `  A
)  =  ( prod_
k  e.  ( M ... n ) ( abs `  A )  x.  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
) ) )
97963adant3 1017 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  prod_ k  e.  ( M ... ( n  +  1
) ) ( abs `  A )  =  (
prod_ k  e.  ( M ... n ) ( abs `  A )  x.  [_ ( n  +  1 )  / 
k ]_ ( abs `  A
) ) )
9865, 93, 973eqtr4d 2220 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )  /\  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1 ) ) A )  =  prod_ k  e.  ( M ... ( n  +  1
) ) ( abs `  A ) )
99983exp 1202 . . . . 5  |-  ( ph  ->  ( n  e.  (
ZZ>= `  M )  -> 
( ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  prod_ k  e.  ( M ... (
n  +  1 ) ) ( abs `  A
) ) ) )
10099com12 30 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
)  ->  ( abs ` 
prod_ k  e.  ( M ... ( n  + 
1 ) ) A )  =  prod_ k  e.  ( M ... (
n  +  1 ) ) ( abs `  A
) ) ) )
101100a2d 26 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( abs `  prod_ k  e.  ( M ... n ) A )  =  prod_ k  e.  ( M ... n ) ( abs `  A
) )  ->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... ( n  +  1
) ) A )  =  prod_ k  e.  ( M ... ( n  +  1 ) ) ( abs `  A
) ) ) )
1029, 15, 21, 27, 58, 101uzind4 9577 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) ) )
1033, 102mpcom 36 1  |-  ( ph  ->  ( abs `  prod_ k  e.  ( M ... N ) A )  =  prod_ k  e.  ( M ... N ) ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   [_csb 3057   {csn 3591   ` cfv 5212  (class class class)co 5869   CCcc 7800   1c1 7803    + caddc 7805    x. cmul 7807   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995   abscabs 10990   prod_cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator