![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1d | Unicode version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fveq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fveq1 5553 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: fveq12d 5561 funssfv 5580 fv2prc 5591 csbfv2g 5593 fvco4 5629 fvmptd 5638 fvmpt2d 5644 mpteqb 5648 fvmptt 5649 fnmptfvd 5662 fmptco 5724 fvunsng 5752 fvsng 5754 fsnunfv 5759 f1ocnvfv1 5820 f1ocnvfv2 5821 fcof1 5826 fcofo 5827 ofvalg 6140 offval2 6146 ofrfval2 6147 caofinvl 6155 tfrlemi1 6385 rdg0g 6441 freceq1 6445 oav 6507 omv 6508 oeiv 6509 pw2f1odclem 6890 mapxpen 6904 xpmapenlem 6905 nninfisollemne 7190 nninfisol 7192 exmidomni 7201 nninfwlpoimlemginf 7235 cc3 7328 fseq1p1m1 10160 seqeq3 10523 seq3f1olemqsum 10584 seq3f1olemstep 10585 seq3f1olemp 10586 seqf1oglem2 10591 seqf1og 10592 seq3id 10596 seq3z 10599 exp3val 10612 bcval5 10834 bcn2 10835 seq3coll 10913 shftcan1 10978 shftcan2 10979 shftvalg 10980 shftval4g 10981 climshft2 11449 sumeq2 11502 summodc 11526 zsumdc 11527 fsum3 11530 isumz 11532 fisumss 11535 fsum3cvg2 11537 isumsplit 11634 prodeq2w 11699 prodeq2 11700 prodmodc 11721 zproddc 11722 fprodseq 11726 prod1dc 11729 fprodssdc 11733 nninfctlemfo 12177 odzval 12379 1arithlem2 12502 fvsetsid 12652 setsslid 12669 setsslnid 12670 prdsex 12880 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 igsumvalx 12972 gsumfzval 12974 gsumpropd 12975 gsumress 12978 gsumval2 12980 grpinvval 13115 grpsubfvalg 13117 grpsubpropdg 13176 grpsubpropd2 13177 mulgfvalg 13191 mulgpropdg 13234 submmulg 13236 subgmulg 13258 releqgg 13290 eqgex 13291 eqgfval 13292 gsumfzmptfidmadd 13409 unitinvcl 13619 unitinvinv 13620 unitlinv 13622 unitrinv 13623 unitnegcl 13626 dvrfvald 13629 dvrvald 13630 rdivmuldivd 13640 subrgugrp 13736 lspval 13886 ixpsnbasval 13962 lidlnegcl 13981 rspcl 13987 rspssid 13988 rspssp 13990 rspsn 14030 zrhmulg 14108 znzrhval 14135 ntrval 14278 clsval 14279 neival 14311 cnpval 14366 txmetcnp 14686 metcnpd 14688 limccl 14813 ellimc3apf 14814 cnplimclemr 14823 limccnp2cntop 14831 dvfvalap 14835 dvfre 14859 lgsval4 15136 lgsmod 15142 peano4nninf 15496 |
Copyright terms: Public domain | W3C validator |