| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fveq1d | Unicode version | ||
| Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| fveq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| fveq1d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq1d.1 | 
. 2
 | |
| 2 | fveq1 5557 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: fveq12d 5565 funssfv 5584 fv2prc 5595 csbfv2g 5597 fvco4 5633 fvmptd 5642 fvmpt2d 5648 mpteqb 5652 fvmptt 5653 fnmptfvd 5666 fmptco 5728 fvunsng 5756 fvsng 5758 fsnunfv 5763 f1ocnvfv1 5824 f1ocnvfv2 5825 fcof1 5830 fcofo 5831 ofvalg 6145 offval2 6151 ofrfval2 6152 caofinvl 6160 tfrlemi1 6390 rdg0g 6446 freceq1 6450 oav 6512 omv 6513 oeiv 6514 pw2f1odclem 6895 mapxpen 6909 xpmapenlem 6910 nninfisollemne 7197 nninfisol 7199 exmidomni 7208 nninfwlpoimlemginf 7242 cc3 7335 fseq1p1m1 10169 seqeq3 10544 seq3f1olemqsum 10605 seq3f1olemstep 10606 seq3f1olemp 10607 seqf1oglem2 10612 seqf1og 10613 seq3id 10617 seq3z 10620 exp3val 10633 bcval5 10855 bcn2 10856 seq3coll 10934 shftcan1 10999 shftcan2 11000 shftvalg 11001 shftval4g 11002 climshft2 11471 sumeq2 11524 summodc 11548 zsumdc 11549 fsum3 11552 isumz 11554 fisumss 11557 fsum3cvg2 11559 isumsplit 11656 prodeq2w 11721 prodeq2 11722 prodmodc 11743 zproddc 11744 fprodseq 11748 prod1dc 11751 fprodssdc 11755 nninfctlemfo 12207 odzval 12410 1arithlem2 12533 fvsetsid 12712 setsslid 12729 setsslnid 12730 prdsex 12940 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 igsumvalx 13032 gsumfzval 13034 gsumpropd 13035 gsumress 13038 gsumval2 13040 grpinvval 13175 grpsubfvalg 13177 grpsubpropdg 13236 grpsubpropd2 13237 mulgfvalg 13251 mulgpropdg 13294 submmulg 13296 subgmulg 13318 releqgg 13350 eqgex 13351 eqgfval 13352 gsumfzmptfidmadd 13469 unitinvcl 13679 unitinvinv 13680 unitlinv 13682 unitrinv 13683 unitnegcl 13686 dvrfvald 13689 dvrvald 13690 rdivmuldivd 13700 subrgugrp 13796 lspval 13946 ixpsnbasval 14022 lidlnegcl 14041 rspcl 14047 rspssid 14048 rspssp 14050 rspsn 14090 zrhmulg 14176 znzrhval 14203 ntrval 14346 clsval 14347 neival 14379 cnpval 14434 txmetcnp 14754 metcnpd 14756 limccl 14895 ellimc3apf 14896 cnplimclemr 14905 limccnp2cntop 14913 dvfvalap 14917 dvfre 14946 plycoeid3 14993 plyrecj 14999 lgsval4 15261 lgsmod 15267 peano4nninf 15650 | 
| Copyright terms: Public domain | W3C validator |