![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1d | Unicode version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fveq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fveq1 5304 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-uni 3654 df-br 3846 df-iota 4980 df-fv 5023 |
This theorem is referenced by: fveq12d 5312 funssfv 5330 csbfv2g 5341 fvco4 5376 fvmptd 5385 fvmpt2d 5389 mpteqb 5393 fvmptt 5394 fmptco 5464 fvunsng 5491 fvsng 5493 fsnunfv 5498 f1ocnvfv1 5556 f1ocnvfv2 5557 fcof1 5562 fcofo 5563 fnofval 5865 offval2 5870 ofrfval2 5871 caofinvl 5877 tfrlemi1 6097 rdg0g 6153 freceq1 6157 oav 6215 omv 6216 oeiv 6217 mapxpen 6562 xpmapenlem 6563 exmidomni 6796 fseq1p1m1 9504 iseqeq3 9856 seq3shft2 9895 seq3f1olemqsum 9925 seq3f1olemstep 9926 seq3f1olemp 9927 ser3add 9931 iseqid 9935 iseqz 9939 ser0 9945 ser3le 9949 exp3val 9953 ibcval5 10167 bcn2 10168 iseqcoll 10243 shftcan1 10264 shftcan2 10265 shftvalg 10266 shftval4g 10267 climshft2 10691 sumeq2 10744 isummolem3 10766 isummo 10769 zisum 10770 fisum 10774 fsum3 10775 isumz 10777 fisumss 10780 fisumcvg2 10782 fsum3cvg2 10783 fsum3ser 10787 isumsplit 10881 fvsetsid 11523 setsidn 11539 setsnidn 11540 peano4nninf 11851 |
Copyright terms: Public domain | W3C validator |