![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1d | Unicode version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fveq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fveq1 5529 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-uni 3825 df-br 4019 df-iota 5193 df-fv 5239 |
This theorem is referenced by: fveq12d 5537 funssfv 5556 fv2prc 5566 csbfv2g 5568 fvco4 5604 fvmptd 5613 fvmpt2d 5618 mpteqb 5622 fvmptt 5623 fnmptfvd 5636 fmptco 5698 fvunsng 5726 fvsng 5728 fsnunfv 5733 f1ocnvfv1 5794 f1ocnvfv2 5795 fcof1 5800 fcofo 5801 ofvalg 6110 offval2 6116 ofrfval2 6117 caofinvl 6123 tfrlemi1 6351 rdg0g 6407 freceq1 6411 oav 6473 omv 6474 oeiv 6475 mapxpen 6866 xpmapenlem 6867 nninfisollemne 7147 nninfisol 7149 exmidomni 7158 nninfwlpoimlemginf 7192 cc3 7285 fseq1p1m1 10112 seqeq3 10468 seq3f1olemqsum 10518 seq3f1olemstep 10519 seq3f1olemp 10520 seq3id 10526 seq3z 10529 exp3val 10540 bcval5 10761 bcn2 10762 seq3coll 10840 shftcan1 10861 shftcan2 10862 shftvalg 10863 shftval4g 10864 climshft2 11332 sumeq2 11385 summodc 11409 zsumdc 11410 fsum3 11413 isumz 11415 fisumss 11418 fsum3cvg2 11420 isumsplit 11517 prodeq2w 11582 prodeq2 11583 prodmodc 11604 zproddc 11605 fprodseq 11609 prod1dc 11612 fprodssdc 11616 odzval 12259 1arithlem2 12380 fvsetsid 12514 setsslid 12531 setsslnid 12532 prdsex 12740 imasival 12749 imasbas 12750 imasplusg 12751 imasmulr 12752 grpinvval 12953 grpsubfvalg 12955 grpsubpropdg 13014 grpsubpropd2 13015 mulgfvalg 13029 mulgpropdg 13070 subgmulg 13093 releqgg 13125 eqgex 13126 eqgfval 13127 unitinvcl 13434 unitinvinv 13435 unitlinv 13437 unitrinv 13438 unitnegcl 13441 dvrfvald 13444 dvrvald 13445 rdivmuldivd 13455 subrgugrp 13548 lspval 13667 ixpsnbasval 13743 lidlnegcl 13762 rspcl 13768 rspssid 13769 rspssp 13771 zrhmulg 13878 ntrval 14007 clsval 14008 neival 14040 cnpval 14095 txmetcnp 14415 metcnpd 14417 limccl 14525 ellimc3apf 14526 cnplimclemr 14535 limccnp2cntop 14543 dvfvalap 14547 dvfre 14571 lgsval4 14818 lgsmod 14824 peano4nninf 15153 |
Copyright terms: Public domain | W3C validator |