ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbima12g GIF version

Theorem csbima12g 5049
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
csbima12g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbima12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3098 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(𝐹𝐵))
2 csbeq1 3098 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3098 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3imaeq12d 5029 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
51, 4eqeq12d 2221 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
6 vex 2776 . . 3 𝑦 ∈ V
7 nfcsb1v 3128 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3128 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfima 5036 . . 3 𝑥(𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
10 csbeq1a 3104 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3104 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11imaeq12d 5029 . . 3 (𝑥 = 𝑦 → (𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵))
136, 9, 12csbief 3140 . 2 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
145, 13vtoclg 2835 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  csb 3095  cima 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-xp 4686  df-cnv 4688  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator