ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbima12g GIF version

Theorem csbima12g 4947
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
csbima12g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbima12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3034 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(𝐹𝐵))
2 csbeq1 3034 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3034 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3imaeq12d 4929 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
51, 4eqeq12d 2172 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
6 vex 2715 . . 3 𝑦 ∈ V
7 nfcsb1v 3064 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3064 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfima 4936 . . 3 𝑥(𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
10 csbeq1a 3040 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3040 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11imaeq12d 4929 . . 3 (𝑥 = 𝑦 → (𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵))
136, 9, 12csbief 3075 . 2 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
145, 13vtoclg 2772 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  csb 3031  cima 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4592  df-cnv 4594  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator