![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbima12g | GIF version |
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
csbima12g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 2936 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵)) | |
2 | csbeq1 2936 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 2936 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | imaeq12d 4775 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2102 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 2622 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 2963 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 2963 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfima 4782 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 2941 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 2941 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | imaeq12d 4775 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 2972 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 2679 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ⦋csb 2933 “ cima 4441 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-cnv 4446 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |