![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbopabg | GIF version |
Description: Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
csbopabg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3062 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑}) | |
2 | dfsbcq2 2967 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | opabbidv 4071 | . . 3 ⊢ (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
4 | 1, 3 | eqeq12d 2192 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})) |
5 | vex 2742 | . . 3 ⊢ 𝑤 ∈ V | |
6 | nfs1v 1939 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
7 | 6 | nfopab 4073 | . . 3 ⊢ Ⅎ𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} |
8 | sbequ12 1771 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
9 | 8 | opabbidv 4071 | . . 3 ⊢ (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}) |
10 | 5, 7, 9 | csbief 3103 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} |
11 | 4, 10 | vtoclg 2799 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 [wsb 1762 ∈ wcel 2148 [wsbc 2964 ⦋csb 3059 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-sbc 2965 df-csb 3060 df-opab 4067 |
This theorem is referenced by: csbcnvg 4813 |
Copyright terms: Public domain | W3C validator |