ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcnvg Unicode version

Theorem csbcnvg 4813
Description: Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
Assertion
Ref Expression
csbcnvg  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )

Proof of Theorem csbcnvg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbrg 4059 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. z F y  <->  [_ A  /  x ]_ z [_ A  /  x ]_ F [_ A  /  x ]_ y
) )
2 csbconstg 3073 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
3 csbconstg 3073 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
42, 3breq12d 4018 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ z [_ A  /  x ]_ F [_ A  /  x ]_ y  <->  z [_ A  /  x ]_ F
y ) )
51, 4bitrd 188 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. z F y  <->  z [_ A  /  x ]_ F
y ) )
65opabbidv 4071 . . 3  |-  ( A  e.  V  ->  { <. y ,  z >.  |  [. A  /  x ]. z F y }  =  { <. y ,  z
>.  |  z [_ A  /  x ]_ F
y } )
7 csbopabg 4083 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  z F y }  =  { <. y ,  z
>.  |  [. A  /  x ]. z F y } )
8 df-cnv 4636 . . . 4  |-  `' [_ A  /  x ]_ F  =  { <. y ,  z
>.  |  z [_ A  /  x ]_ F
y }
98a1i 9 . . 3  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  { <. y ,  z >.  |  z
[_ A  /  x ]_ F y } )
106, 7, 93eqtr4rd 2221 . 2  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ { <. y ,  z >.  |  z F y } )
11 df-cnv 4636 . . 3  |-  `' F  =  { <. y ,  z
>.  |  z F
y }
1211csbeq2i 3086 . 2  |-  [_ A  /  x ]_ `' F  =  [_ A  /  x ]_ { <. y ,  z
>.  |  z F
y }
1310, 12eqtr4di 2228 1  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   [.wsbc 2964   [_csb 3059   class class class wbr 4005   {copab 4065   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator