ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcnvg Unicode version

Theorem csbcnvg 4906
Description: Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
Assertion
Ref Expression
csbcnvg  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )

Proof of Theorem csbcnvg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbrg 4138 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. z F y  <->  [_ A  /  x ]_ z [_ A  /  x ]_ F [_ A  /  x ]_ y
) )
2 csbconstg 3138 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
3 csbconstg 3138 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
42, 3breq12d 4096 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ z [_ A  /  x ]_ F [_ A  /  x ]_ y  <->  z [_ A  /  x ]_ F
y ) )
51, 4bitrd 188 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. z F y  <->  z [_ A  /  x ]_ F
y ) )
65opabbidv 4150 . . 3  |-  ( A  e.  V  ->  { <. y ,  z >.  |  [. A  /  x ]. z F y }  =  { <. y ,  z
>.  |  z [_ A  /  x ]_ F
y } )
7 csbopabg 4162 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  z F y }  =  { <. y ,  z
>.  |  [. A  /  x ]. z F y } )
8 df-cnv 4727 . . . 4  |-  `' [_ A  /  x ]_ F  =  { <. y ,  z
>.  |  z [_ A  /  x ]_ F
y }
98a1i 9 . . 3  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  { <. y ,  z >.  |  z
[_ A  /  x ]_ F y } )
106, 7, 93eqtr4rd 2273 . 2  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ { <. y ,  z >.  |  z F y } )
11 df-cnv 4727 . . 3  |-  `' F  =  { <. y ,  z
>.  |  z F
y }
1211csbeq2i 3151 . 2  |-  [_ A  /  x ]_ `' F  =  [_ A  /  x ]_ { <. y ,  z
>.  |  z F
y }
1310, 12eqtr4di 2280 1  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   [.wsbc 3028   [_csb 3124   class class class wbr 4083   {copab 4144   `'ccnv 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator