ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcnvg Unicode version

Theorem csbcnvg 4788
Description: Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
Assertion
Ref Expression
csbcnvg  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )

Proof of Theorem csbcnvg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbrg 4036 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. z F y  <->  [_ A  /  x ]_ z [_ A  /  x ]_ F [_ A  /  x ]_ y
) )
2 csbconstg 3059 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
3 csbconstg 3059 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
42, 3breq12d 3995 . . . . 5  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ z [_ A  /  x ]_ F [_ A  /  x ]_ y  <->  z [_ A  /  x ]_ F
y ) )
51, 4bitrd 187 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. z F y  <->  z [_ A  /  x ]_ F
y ) )
65opabbidv 4048 . . 3  |-  ( A  e.  V  ->  { <. y ,  z >.  |  [. A  /  x ]. z F y }  =  { <. y ,  z
>.  |  z [_ A  /  x ]_ F
y } )
7 csbopabg 4060 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  z F y }  =  { <. y ,  z
>.  |  [. A  /  x ]. z F y } )
8 df-cnv 4612 . . . 4  |-  `' [_ A  /  x ]_ F  =  { <. y ,  z
>.  |  z [_ A  /  x ]_ F
y }
98a1i 9 . . 3  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  { <. y ,  z >.  |  z
[_ A  /  x ]_ F y } )
106, 7, 93eqtr4rd 2209 . 2  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ { <. y ,  z >.  |  z F y } )
11 df-cnv 4612 . . 3  |-  `' F  =  { <. y ,  z
>.  |  z F
y }
1211csbeq2i 3072 . 2  |-  [_ A  /  x ]_ `' F  =  [_ A  /  x ]_ { <. y ,  z
>.  |  z F
y }
1310, 12eqtr4di 2217 1  |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   [.wsbc 2951   [_csb 3045   class class class wbr 3982   {copab 4042   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator